Answer:
I hope it's helpful for you ☺️
The phenomenon which is responsible for this effect is called diffraction.
Diffraction is the ability of a wave to propagate when it meets an obstacle or a slit. When the wave encounters the obstacle or the slit, it 'bends' around it and it continues propagate beyond it. A classical example of this phenomenon is when a sound wave propagates through a wall where there is a small aperture (as in the example of this problem)
Answer:
"The tendency of an object to resist changes in its state of motion varies with mass. Mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion."
Explanation:
I hope this helps! <3
Answer:
C. It speeds up, and the angle increases
Explanation:
We can answer by using the Snell's law:

where
are the refractive index of the first and second medium
is the angle of incidence (measured between the incident ray and the normal to the surface)
is the angle of refraction (measured between the refracted ray and the normal to the surface)
In this problem, light moves into a medium that has lower index of refraction, so

We can rewrite Snell's law as

and since

this means that

which implies

so, the angle increases.
Also, the speed of light in a medium is given by

where c is the speed of light and v the refractive index: we see that the speed is inversely proportional to n, therefore the lower the index of refraction, the higher the speed. So, in this problem, the light will speed up, since it moves into a medium with lower index of refraction.