Hey there!
Ca + H₃PO₄ → Ca₃(PO₄)₂ + H₂
Balance PO₄.
1 on the left, 2 on the right. Add a coefficient of 2 in front of H₃PO₄.
Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + H₂
Balance H.
6 on the left, 2 on the right. Add a coefficient of 3 in front of H₂.
Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Balance Ca.
1 on the right, 3 on the right. Add a coefficient of 3 in front of Ca.
3Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Our final balanced equation:
3Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Hope this helps!
I think its C: due to mixing and oceanic.....
Isotope ¹⁸F⁻ contains:
1) p⁺ = 9; number of protons.
Fluorine has a<span>tomic number Z = 9 (total number of protons).
2) e</span>⁻<span> = 10; </span>number of electrons.<span>
In element number of electrons and protons are the same, because element has neutral charge, but because in this example, fluorine is anion with negative charge, it has one electron more.
3) n</span>° = 9; number of neutrons.
<span>Mass number
A = 18 is total number of protons and neutrons in a nucleus, so number of neutrons is A-Z = 18-9=9.</span>
Just for more clarification, lowercase k is the rate constant. Uppercase K is the equilibrium constant. You can actually use k to find K (equilibrium constant). K=k/k' This means that the equilibrium constant is the rate constant of the forward reaction divided by the rate constant of the reverse reaction