Remember that any intersection of lines is a C, and that the number of hydrogens attached are the necessary to complet the 4 bonds.
1) CH3 - CH (OH) - CH (CH3) -CH3
2) CH3 - O - CH(CH3)-CH2 - CH3
I have used the parenthesis to indicate that the radical inside is in other branch, bonded by a single line -
I’m pretty sure it’s true
Answer:
A3B3
Explanation:
Molecular formula = n x empirical formula
(AB) n = 90
MM of AB = 30 g/mol
30n = 90
Divide both side by the coefficient n i.e 30
n = 90/30 = 3
Molecular formula = n x empirical formula
Molecular formula = n x (AB)
Molecular formula = 3(AB) = A3B3
Answer:
See attachment.
Explanation:
Mono-substituted cyclohexanes are more stable with their substituents in an equatorial position. However, with poly-substituted cyclohexanes, the situation is more complex since the steric effects of all substituents have to be taken into account. In this case, you can see that <u>the interconversion is shifted towards the conformation in the bottom because there is less tension between the substituents</u>.