Answer:

Step-by-step explanation:
we know that
The surface area of the figure is equal to the lateral face of the triangular pyramid plus the lateral face of the rectangular prism plus the area of the base of the rectangular prism
step 1
Find the lateral face of the triangular prism
The lateral area is equal to the area of its four lateral triangular faces

step 2
Find the lateral area of the rectangular prism
The lateral area is equal to the perimeter of the base multiplied by the height

step 3
Find the area of the base of the rectangular prism

step 4
Find the surface area

Answer:
α² +β² = 3 4/9
Step-by-step explanation:
Assuming α and β are solutions to the equation, it can be factored as ...
(x -α)(x -β) = 0
Expanding this, we get ...
x² -(α +β)x +αβ = 0
Dividing the original equation by 3, we find ...
x² +(1/3)x -5/3 ≡ x² -(α+β)x +αβ ⇒ (α+β) = -1/3, αβ = -5/3
We know that the square (α+β)² can be expanded to ...
(α +β)² = α² +β² +2αβ
α² +β² = (α +β)² -2αβ . . . . . . subtract 2αβ
Substituting the values for (α+β) and αβ, we find the desired expression is ...
α² +β² = (-1/3)² -2(-5/3) = 1/9 +10/3 = 31/9
α² +β² = 3 4/9
Answer:
Radius = 4.51
Step-by-step explanation:
From the recursive rule, you can tell the initial value is 3 and the common ratio is 12. The explicit rule is always
.. (n-th term) = (initial value)*(common ratio)^(n -1)
Subsituting the values you know, you have
.. an = 3*12^(n-1)