Answer:
245.45km in a direction 21.45° west of north from city A
Explanation:
Let's place the origin of a coordinate system at city A.
The final position of the airplane is given by:
rf = ra + rb + rc where ra, rb and rc are the vectors of the relative displacements the airplane has made. If we separate this equation into its x and y coordinates:
rfX = raX+ rbX + rcX = 175*cos(30)-150*sin(20)-190 = -89.75km
rfY = raY + rbY + rcT = 175*sin(30)+150*cos(20) = 228.45km
The module of this position is:

And the angle measure from the y-axis is:

So the answer is 245.45km in a direction 21.45° west of north from city A
<span>The specific heat (or the amount of heat required to raise the temperature of a unit mass of a substance by 1 degree Celsius) of copper is about 0.386 J/g/degree Celsius. This means that if we supply 0.386 J of energy to 1 gram of copper, its temperature will increase by 1 degree Celsius.</span>
To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.
The diple moment associated with an iron bar is given by,

Where,
Dipole momento associated with an Atom
N = Number of atoms
y previously given in the problem and its value is 2.8*10^{-23}J/T


The number of the atoms N, can be calculated as,

Where
Density
Molar Mass
A = Area
L = Length
Avogadro number


Then applying the equation about the dipole moment associated with an iron bar we have,



PART B) With the dipole moment we can now calculate the Torque in the system, which is



<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>
Answer:
2560J
Explanation:
By definition the kinetic energy can be calculated in the following way:
K = (mv²)/2 = 80kg·(8.0m/s)²/2 = 2560 J