Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




How many joules of energy are required to run a 100 W light bulb for one day?
<span><span><span>A</span><span>100 </span>joules</span><span><span>B</span>100<span>W </span><span>× </span>24<span>hr </span>joules</span><span><span>C</span>100<span>W </span><span>× </span>24<span>hr </span><span>× </span>60<span>min∕hr </span>joules</span><span><span>D</span>100<span>W </span><span>× </span>24<span>hr </span><span>× </span>60<span>min∕hr </span><span>× </span>60<span>s∕min </span>joules</span></span>
Answer:
230 N
Explanation:
At the lowest position , the velocity is maximum hence at this point, maximum support force T is given by the branch.
The swinging motion of the ape on a vertical circular path , will require
a centripetal force in upward direction . This is related to weight as follows
T - mg = m v² / R
R is radius of circular path . m is mass of the ape and velocity is 3.2 m/s
T = mg - mv² / R
T = 8.5 X 9.8 + 8.5 X 3.2² / .60 { R is length of hand of ape. }
T = 83.3 + 145.06
= 228.36
= 230 N ( approximately )
Answer:
The guitarist should increase the tension of the string.
Explanation:
The frequency of a vibrating string is determined by fn=(n/(2L))√T/μ. So if the tension in the string increased, the rate at which it vibrates (the frequency) will also increase.
Therefore it is advisable that she increase the tension of the string.
I hope it helps, please give brainliest if it does
<u>Given;</u>
mass m = 75 kg
acceleration a = 24.5 ms²
<em>F = ma </em>
F = 75 kg * 24.5 ms²
= 1837.5 kg ms².