Answer:
You are doing this wrong. Make sure that if you have 2 rows and on the top it has pounds then on the second bottom row you also have pounds so that they cancel each other out.
Explanation:
So, the time needed before you hear the splash is approximately <u>2.06 s</u>.
<h3>Introduction</h3>
Hi ! In this question, I will help you. This question uses two principles, namely the time for an object to fall freely and the time for sound to propagate through air. When moving in free fall, the time required can be calculated by the following equation:



With the following condition :
- t = interval of the time (s)
- h = height or any other displacement at vertical line (m)
- g = acceleration of the gravity (m/s²)
Meanwhile, for sound propagation (without sound reflection), time propagates is the same as the quotient of distance by time. Or it can be formulated by :

With the following condition :
- t = interval of the time (s)
- s = shift or displacement (m)
- v = velocity (m/s)
<h3>Problem Solving</h3>
We know that :
- h = height or any other displacement at vertical line = 19.6 m
- g = acceleration of the gravity = 9.8 m/s²
- v = velocity = 343 m/s
What was asked :
= ... s
Step by step :
- Find the time when the object falls freely until it hits the water. Save value as





- Find the time when the sound propagate through air. Save value as




- Find the total time




<h3>Conclusion</h3>
So, the time needed before you hear the splash is approximately 2.06 s.
Answer:
The field and winding
Explanation: they are both connected
They hit the ground at the same time
Answer:
a

b

Explanation:
From the question we are told that
The spring constant is 
The maximum extension of the spring is 
The number of oscillation is 
The time taken is 
Generally the the angular speed of this oscillations is mathematically represented as

where T is the period which is mathematically represented as

substituting values


Thus


this angular speed can also be represented mathematically as

=> 
substituting values


In SHM (simple harmonic motion )the equation for velocity is mathematically represented as

The velocity is maximum when

=> 
=> 
=> 