She can climb 0.92 m without losing weight.
<u>Explanation</u>:
Gravitational potential energy is the energy consisting of the product of mass, gravity and height.
1 cal = 4184 J
140 cal = 585760 J
Energy = 585760 J, m = 65.0 kg = 65000 g, Efficiency = 20 %
GPE = mgh
where m represents the mass
g represents the gravity,
h represents the height.
585760 = 65000
9.8
h
h = 0.92 m.
Answer:
Radius of the loop is 0.18 m or 18 cm
Explanation:
Given :
Current flowing through the wire, I = 45 A
Magnetic field at the center of the wire, B = 1.50 x 10⁻⁴ T
Number of turns in circular wire, N = 1
Consider R be the radius of the circular wire.
The magnetic field at the center of the current carrying circular wire is determine by the relation:
Here μ₀ is vacuum permeability constant and its value is 4π x 10⁻⁷ Tm/A.
Substitute the suitable values in the above equation.

R = 0.18 m
Answer:
The height reached is 20m, The time taken to reach 20m is 2 seconds
Explanation:
Observing the equations of motion we can see that the following equation will be most helpful for this question.

We are given initial velocity, u
We know that the stone will stop at its maximum height, so final velocity, v
Acceleration, a
And we are looking for the displacement (height reached), s
Substitute the values we are given into the equation

Rearrange for s



s = -20 (The negative is just showing direction, it can be ignored for now)
The height reached is 20m
Use a different equation to find the time taken

Substitute in the values we have

Rearrange for t



t = 2s
The time taken to reach 20m is 2 seconds
OPTION C The car is accelerating because the direction of velocity is changing explains why a race car going around a curve is accelerating, even if the speed is constant
- When a body is in uniform circular motion ( constant speed ), it will continuously cheanges its direction and so the body is accelerating
- The rate at which an item changes its velocity is known as acceleration, a vector variable. If an object's velocity is changing, it is accelerating.
- As a vector quantity, acceleration has a direction attached to it. The acceleration vector's direction is determined by two factors: if the thing is slowing down or speeding up the direction the thing is travelling in (+ or -)
- The following general rule is used to calculate acceleration:
An object's acceleration will be in the opposite direction of its velocity if it is slowing down.
You may use this basic concept to determine if an object's acceleration is positive or negative, to the right or left, up or down, etc.
To know more about acceleration visit : brainly.com/question/12550364
#SPJ4
Explanation:
it's B =) hhggusucvgaugcavsjssnd