Answer:
The answer would be (1.23, 4.39)
Step-by-step explanation:
Because they are both equal to y, we can set the equations equal to each other and then solve.
4.9x - 1.64 = -0.25x + 4.7
5.15x - 1.64 = 4.7
5.15x = 6.34
x = 1.23
Now that we have the value for x, we can plug into either equation and find y.
y = -0.25x + 4.7
y = -0.25(1.23) + 4.7
y = -.31 + 4.7
y = 4.39
The practical rule would be, times that number, by the result of the first time you multiplied the first number. But, it would all depend by how much your're raising the number by.
<u>
For example:</u>

We do,

But, once again, this was an example. This would show and illustrate the rule of "raising a power".<span />
Make a substitution:

Then the system becomes
![\begin{cases}\dfrac{2\sqrt[3]{u}}{u-v}+\dfrac{2\sqrt[3]{u}}{u+v}=\dfrac{81}{182}\\\\\dfrac{2\sqrt[3]{v}}{u-v}-\dfrac{2\sqrt[3]{v}}{u+v}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu-v%7D%2B%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu-v%7D-%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
Simplifying the equations gives
![\begin{cases}\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81}{182}\\\\\dfrac{4\sqrt[3]{v^4}}{u^2-v^2}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
which is to say,
![\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81\times4\sqrt[3]{v^4}}{u^2-v^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%5Ctimes4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D)
![\implies\sqrt[3]{\left(\dfrac uv\right)^4}=81](https://tex.z-dn.net/?f=%5Cimplies%5Csqrt%5B3%5D%7B%5Cleft%28%5Cdfrac%20uv%5Cright%29%5E4%7D%3D81)


Substituting this into the new system gives
![\dfrac{4\sqrt[3]{v^4}}{(\pm27v)^2-v^2}=\dfrac1{182}\implies\dfrac1{v^2}=1\implies v=\pm1](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7B%28%5Cpm27v%29%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cimplies%5Cdfrac1%7Bv%5E2%7D%3D1%5Cimplies%20v%3D%5Cpm1)

Then

(meaning two solutions are (7, 13) and (-7, -13))
Answer:
c= 12t
c is the amount of energy you burn, so it'll be the "solution" to the equation. Multiply 12 times the amount of time you spend exercising to find how much energy you'll burn.