Answer:
false it's 24 hours long.
I believe the answer you are looking for is the 4th one.
Answer:
Increase in the concentration of the reactants (vinegar and baking soda) leads to an increase in the rate of reaction (more volume of CO2 is evolved within a shorter time)
Explanation:
The chemical reaction between baking soda and vinegar in water is shown in the chemical reaction equation below;
NaHCO3(aq) + CH3COOH(aq) ----->CO2(g) + H2O(l) + CH3COONa(aq)
The chemical name of baking soda is sodium bicarbonate (NaHCO3) while vineager is a dilute acetic acid (CH3COOH) solution. This reaction provides a very easy set up in which we can study the effect of concentration on the rate of chemical reaction.
We must have it behind our minds that increase in the concentration of reactant species increases the rate of chemical reaction. Secondly, the rate of the reaction between baking soda and vinegar can be monitored by observing the volume of CO2 evolved and how quickly it evolves from the reaction mixture.
We can now postulate a hypothesis which states that; 'increase in the concentration of the reactants (vinegar and baking soda) leads to an increase in the rate of reaction (more volume of CO2 is evolved within a shorter time).'
If we go ahead to subject this hypothesis to experimental test, it will be confirmed to be true because a greater volume of CO2 will be evolved within a shorter time as the concentration of the reactants increases.
It is going to be reaction of neutralization, and water and salt will be formed. If acid and base are strong, the reaction of the solution should become neutral.
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults