Bzjnu8:i9.8&9olzlns soccer
Answer:
True
Explanation:
It's true because the pH is a measure of how basic or acid a solution is. In an acidic medium, the pH scales goes from 0 to 7. While in a basic medium goes from 7 to 14. The lower the pH value of the most acid the solution is.
1. The expression pH = -log(molar concentration of hydronium) allow to calculate the pH of a solution.
2. On the other hand, the expression pOH = -log(molar concentration of hydroxide) allow to determine the pOH of a solution.
The values of pH and pOH always obey the following expression:
pH + pOH = 14
Thus if for instance the pH becomes smaller the pOH must become bigger in order to fulfill the equation. Which means that the concentration of hydronium ions is greater than the hydroxide concentration.
For example, in an acidic medium:
if pH= 3, pOH= 11
In this case the molar concentration of hydronium is 0,001M. And the molar concentration of hydroxide ions is just 0,00000000001M.
Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation:
Answer: 1.48 atmosphere
Explanation:
Pressure in kilopascal = 150
Pressure in atmosphere = ?
Recall that 1 atmosphere = 101.325 kilopascal
Hence, 1 atm = 101.325 kPa
Z atm = 150 kPa
To get the value of Z, cross multiply
150 kPa x 1 atm = 101.325 kPa x Z
150 kPa•atm = 101.325 kPa•Z
Divide both sides by 101.325 kPa
150 kPa•atm/101.325 kPa = 101.325 kPa•Z/101.325 kPa
1.48 atm = Z
Thus, 150 kPa is equivalent to 1.48 atmospheres