Answer:
Re = 1 10⁴
Explanation:
Reynolds number is
Re = ρ v D /μ
The units of each term are
ρ = [kg / m³]
v = [m / s]
D = [m]
μ = [Pa s]
The pressure
Pa = [N / m²] = [Kg m / s²] 1 / [m²] = [kg / m s²]
μ = [Pa s] = [kg / m s²] [s] = [kg / m s]
We substitute the units in the equation
Re = [kg / m³] [m / s] [m] / [kg / m s]
Re = [kg / m s] / [m s / kg]
RE = [ ]
Reynolds number is a scalar
Let's evaluate for the given point
Where the data for methane are:
viscosity μ = 11.2 10⁻⁶ Pa s
the density ρ = 0.656 kg / m³
D = 2 in (2.54 10⁻² m / 1 in) = 5.08 10⁻² m
Re = 0.656 4 2 5.08 10⁻² /11.2 10⁻⁶
Re = 1.19 10⁴
A. 0.5kg
To get this answer you need to follow the equation of KE=0.5*mv^2
But we don't have the m part in the equation. So just plug in the numbers to see which works best, though I can tell you before we do that the answer would be a.
As you may know, gravity, is a force of 9.8 m/s. And we want to get 9.8 Joules. So if we take a half a kg stone, release it at one meter, we get half of the normal gravity pull, 4.90 Joules. That means if we take half a kg stone and drop it at a doubled height, we get 9.8 Joules.
That is also to say that if we have a 1kg stone and drop it at one meter you will get the normal pull of gravity in Joules, 9.8J.
Be careful though, this does not mean if you drop a 1kg stone and a .5 kg stone the 1kg will hit first. This simply means that the 1kg stone will have twice the Joules that the .5kg stone has.
Answer:
Explanation:
KE = ½mv² = ½(6.8)8² = 217.6 J
round as appropriate because that result is way too much precision for the inputs provided. Arguably should be 200 J based on the single significant digit of the velocity.
Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.
We can use the equation vf (the final velocity) =vi (the initial velocity) +at (aceleration times time)
We know the final velocity 100m/s, the initial velocity 0, and the acceleration (gravity) 9.8m/s^2. So, 100=0+9.8t. t=100/9.8