Answer:
The beam used is a negatively charged electron beam with a velocity of
v = E / B
Explanation:
After reading this long statement we can extract the data to work on the problem.
* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.
* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

q E = qv B
v = E / B
this configuration is called speed selector
They ask us what type of beam was used.
The beam used is a negatively charged electron beam with a velocity of v = E / B
Explanation:
There's a massive amount, just think of anything everyday. Like a table on the floor, or when your walking around and putting pressure on the floor. When you squeeze something which is solid. Anything like that will do.
Answer:
5 N acting in the same direction as the 10 N force
Explanation:
10+5=15
15=15
Answer:
yes
Explanation:
you will feel weary after shorter times
When the object is at rest, there is a zero net force due the cancellation of the object's weight <em>w</em> with the normal force <em>n</em> of the table pushing up on the object, so that by Newton's second law,
∑ <em>F</em> = <em>n</em> - <em>w</em> = 0 → <em>n</em> = <em>w</em> = <em>mg</em> = 112.5 N ≈ 113 N
where <em>m</em> = 12.5 kg and <em>g</em> = 9.80 m/s².
The minimum force <em>F</em> needed to overcome <u>maximum</u> static friction <em>f</em> and get the object moving is
<em>F</em> > <em>f</em> = 0.50 <em>n</em> = 61.25 N ≈ 61.3 N
which means a push of <em>F</em> = 15 N is not enough the get object moving and so it stays at rest in equilibrium. While the push is being done, the net force on the object is still zero, but now the horizontal push and static friction cancel each other.
So:
(a) Your free body diagram should show the object with 4 forces acting on it as described above. You have to draw it to scale, so whatever length you use for the normal force and weight vectors, the length of the push and static friction vectors should be about 61.3/112.5 ≈ 0.545 ≈ 54.5% as long.
(b) Friction has a magnitude of 15 N because it balances the pushing force.
(c) The object is in equilibrium and not moving, so the acceleration is zero.