1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
3 years ago
5

What is the speed of light across space?

Physics
1 answer:
ladessa [460]3 years ago
6 0

Answer:

299,792 kilometers per second.

Explanation:

Hope I helped ya.

<u><em>< Sarah ></em></u>

You might be interested in
Coherent light of frequency 6.37×1014 Hz passes through two thin slits and falls on a screen 88.0 cm away. You observe that the
IgorC [24]

Answer:

The distance between the two slits is 40.11 μm.

Explanation:

Given that,

Frequency f= 6.37\times10^{14}\ Hz

Distance of the screen l = 88.0 cm

Position of the third order y =3.10 cm

We need to calculate the wavelength

Using formula of wavelength

\lambda=\dfrac{c}{f}

where, c = speed of light

f = frequency

Put the value into the formula

\lambda=\dfrac{3\times10^{8}}{6.37\times10^{14}}

\lambda=471\ nm

We need to calculate the distance between the two slits

m\times \lambda=d\sin\theta

d =\dfrac{m\times\lambda}{\sin\theta}

Where, m = number of fringe

d = distance between the two slits

Here, \sin\theta =\dfrac{y}{l}

Put the value into the formula

d=\dfrac{3\times471\times10^{-9}\times88.0\times10^{-2}}{3.10\times10^{-2}}

d=40.11\times10^{-6}\ m

d = 40.11\ \mu m

Hence, The distance between the two slits is 40.11 μm.

7 0
3 years ago
What would be the weight of the moon if it were resting on the surface of the earth
kari74 [83]
We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers. 
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).

Earth's radius . . . . .  6,360 km  =  6.36 x 10⁶ meters
Moon's radius . . . . .  1,738 km  =  1.738 x 10⁶ meters
Sum of their radii  =                      8.098 x 10⁶ meters

Also:
Earth's mass . . . . .  5.972 x 10²⁴ kg
Moon's mass . . . . .  7.348 x 10²²  kg
<span>
and now we're ready to go !

       Gravitational force = 

                   G  M₁ M₂ / R²

= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²²  kg)/</span>(8.098 x 10⁶ m)²

= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³)      Newtons

=    (I get ...)        4.463 x 10²³ Newtons

That's almost exactly   10²³ pounds 

                           =  50,153,000,000,000,000,000 tons.     

Those are big numbers. 
All I can say is:  I wouldn't exactly call that "resting" on the surface".
7 0
3 years ago
A commuter train passes a passenger platform at a constant speed of 40.4 m/s. The train horn is sounded at its characteristic fr
mihalych1998 [28]

(a) -83.6 Hz

Due to the Doppler effect, the frequency of the sound of the train horn appears shifted to the observer at rest, according to the formula:

f' = (\frac{v}{v\pm v_s})f

where

f' is the apparent frequency

v = 343 m/s is the speed of sound

v_s is the velocity of the source of the sound (positive if the source is moving away from the observer, negative if it is moving towards the observer)

f is the original frequency of the sound

Here we have

f = 350 Hz

When the train is approaching, we have

v_s = -40.4 m/s

So the frequency heard by the observer on the platform is

f' = (\frac{343 m/s}{343 m/s - 40.4 m/s})(350 Hz)=396.7 Hz

When the train has passed the platform, we have

v_s = +40.4 m/s

So the frequency heard by the observer on the platform is

f' = (\frac{343 m/s}{343 m/s + 40.4 m/s})(350 Hz)=313.1 Hz

Therefore the overall shift in frequency is

\Delta f = 313.1 Hz - 396.7 Hz = -83.6 Hz

And the negative sign means the frequency has decreased.

(b) 0.865 m

The wavelength and the frequency of a wave are related by the equation

v=\lambda f

where

v is the speed of the wave

\lambda is the wavelength

f is the frequency

When the train is approaching the platform, we have

v = 343 m/s (speed of sound)

f = f' = 396.7 Hz (apparent frequency)

Therefore the wavelength detected by a person on the platform is

\lambda' = \frac{v}{f'}=\frac{343 m/s}{396.7 Hz}=0.865m

5 0
3 years ago
What are the risk of obesity in middle adulthood
bekas [8.4K]
Well that can ruin the future and mess up your future planned eating routine/ plan not sure how else to say it sorry lol, but it can be worse as you get older since you can suffer from back problems from the weight dragging you down or swollen feet and you can be making your adulthood worse when your actually and adult
7 0
3 years ago
Please help! its really easy
Dmitry [639]

weather station - an area where weather data...

satellite - sends pictures...

weather balloon - filled with helium...

radar - sends out signals...

5 0
3 years ago
Read 2 more answers
Other questions:
  • Two long parallel wires each carry 2.2 A in the same direction, with their centers 1.8 cm apart.A. Find the magnitude of the mag
    15·1 answer
  • Explain how depression arises from a combination of both genetic and environmental factors
    5·2 answers
  • A friend tells you that a lunar eclipse will take place the following week, and invites you to join him to observe the eclipse t
    9·1 answer
  • Which of the following statements are true about magnets?
    7·1 answer
  • When you go "down" the food chain by continuing to ask "what does it eat?" at what category of living things do you always end u
    12·1 answer
  • When an automobile rolls on pavement, the instantaneous center of one of its wheels is located on the wheel axle. True o False
    9·1 answer
  • ? energy that results from the position or shape of an object , Potential energy related to an objects ?
    12·1 answer
  • Question 5 (2 points)
    11·2 answers
  • MEASUREMENT
    12·1 answer
  • A car is traveling at 75 m/s. 50 seconds later it is traveling at 25 m/s. What is the car’s acceleration?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!