Answer:
The current is not used up. The electrons flow through the entire circuit and this travel is the current. They flow until they are not charged anymore. That is also why the circuit must be closed or else electrons would escape not just light it up for a second then go out.
Explanation:
(a) The average speed from A to B would be 1.76 metre per second and the average velocity from A to B would also be 1.76 metre per second
<span>(b) The average speed from A to C would be 1.73 metre per second and the average velocity from A to C would be 0.87 metre per second</span>
Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
Answer:

Explanation:
Assuming the we have to find ratio maximum forces on the mass in each case
we know that in a spring mass system
F= Kx
K= spring constant
x= spring displacement
Case 1:

case 2:

therefore, 

Answer: 10.2 kg if g = 9.8, 10 if g = 10.
Explanation:
Weight or the "force of gravity" on a person is simply defined by the equation: F = ma. In this case, the acceleration is g, which is 9.8 but can be rounded up to 10. Based on this, we have:
F = mg
100 = m*9.8
m = 10.2(or 10 if we set g to 10).