Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
It’s C I hope it helps you
Answer:
x=4.06m
Explanation:
A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.
Vf=Vo+a.t (1)\\\\
{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\
X=Xo+ VoT+0.5at^{2} (3)\\
Where
Vf = final speed
Vo = Initial speed
T = time
A = acceleration
X = displacement
In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve
for this problem
Vf=7.6m/s
t=1.07
Vo=0
we can use the ecuation number one to find the acceleration
a=(Vf-Vo)/t
a=(7.6-0)/1.07=7.1m/s^2
then we can use the ecuation number 2 to find the distance
{Vf^{2}-Vo^2}/{2.a} =X
(7.6^2-0^2)/(2x7.1)=4.06m
The answer is C) rate of change of momentum. The answer is not initial or final momentum as the start and end points are not changing. On the other hand, the time it takes for the ball to change velocity is. This change relates to the change of momentum. Hope this helped :))
Answer:
608kg
Explanation:
Formula : <u>Kinetic</u><u> </u><u>energy</u><u> </u>
½ ×mass x speed²
<u>47500</u>
½×12.5²
=608 Kg