Answer:
The matrix form of the system of equations is ![\left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right] \left[\begin{array}{c}x&y&w&z&u\end{array}\right] =\left[\begin{array}{c}5&4&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%261%261%261%26-3%5C%5C1%26-1%26-2%261%262%5C%5C2%260%261%26-1%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%26w%26z%26u%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D5%264%263%5Cend%7Barray%7D%5Cright%5D)
The reduced row echelon form is ![\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%260%260%261%2F4%260%263%5C%5C0%261%260%269%2F4%26-4%265%5C%5C0%260%261%26-3%2F2%261%26-3%5Cend%7Barray%7D%5Cright%5D)
The vector form of the general solution for this system is ![\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%26w%26z%26u%5Cend%7Barray%7D%5Cright%5D%3Du%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B1%7D%7B6%7D%26%5Cfrac%7B5%7D%7B2%7D%260%26%5Cfrac%7B2%7D%7B3%7D%261%5Cend%7Barray%7D%5Cright%5D%2Bw%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B1%7D%7B6%7D%26-%5Cfrac%7B3%7D%7B2%7D%261%26%5Cfrac%7B2%7D%7B3%7D%260%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B2%7D%26%5Cfrac%7B1%7D%7B2%7D%260%262%260%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
- <em>Convert the given system of equations to matrix form</em>
We have the following system of linear equations:

To arrange this system in matrix form (Ax = b), we need the coefficient matrix (A), the variable matrix (x), and the constant matrix (b).
so
![A= \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%261%261%261%26-3%5C%5C1%26-1%26-2%261%262%5C%5C2%260%261%26-1%261%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%26w%26z%26u%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{c}5&4&3\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D5%264%263%5Cend%7Barray%7D%5Cright%5D)
- <em>Use row operations to put the augmented matrix in echelon form.</em>
An augmented matrix for a system of equations is the matrix obtained by appending the columns of b to the right of those of A.
So for our system the augmented matrix is:
![\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\1&-1&-2&1&2&4\\2&0&1&-1&1&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%261%261%26-3%265%5C%5C1%26-1%26-2%261%262%264%5C%5C2%260%261%26-1%261%263%5Cend%7Barray%7D%5Cright%5D)
To transform the augmented matrix to reduced row echelon form we need to follow this row operations:
- add -1 times the 1st row to the 2nd row
![\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\2&0&1&-1&1&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%261%261%26-3%265%5C%5C0%26-2%26-3%260%265%26-1%5C%5C2%260%261%26-1%261%263%5Cend%7Barray%7D%5Cright%5D)
- add -2 times the 1st row to the 3rd row
![\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\0&-2&-1&-3&7&-7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%261%261%26-3%265%5C%5C0%26-2%26-3%260%265%26-1%5C%5C0%26-2%26-1%26-3%267%26-7%5Cend%7Barray%7D%5Cright%5D)
- multiply the 2nd row by -1/2
![\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&-2&-1&-3&7&-7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%261%261%26-3%265%5C%5C0%261%263%2F2%260%26-5%2F2%261%2F2%5C%5C0%26-2%26-1%26-3%267%26-7%5Cend%7Barray%7D%5Cright%5D)
- add 2 times the 2nd row to the 3rd row
![\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&2&-3&2&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%261%261%26-3%265%5C%5C0%261%263%2F2%260%26-5%2F2%261%2F2%5C%5C0%260%262%26-3%262%26-6%5Cend%7Barray%7D%5Cright%5D)
- multiply the 3rd row by 1/2
![\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&1&-3/2&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%261%261%26-3%265%5C%5C0%261%263%2F2%260%26-5%2F2%261%2F2%5C%5C0%260%261%26-3%2F2%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- add -3/2 times the 3rd row to the 2nd row
![\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%261%261%26-3%265%5C%5C0%261%260%269%2F4%26-4%265%5C%5C0%260%261%26-3%2F2%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- add -1 times the 3rd row to the 1st row
![\left[\begin{array}{ccccc|c}1&1&0&5/2&-4&8\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%261%260%265%2F2%26-4%268%5C%5C0%261%260%269%2F4%26-4%265%5C%5C0%260%261%26-3%2F2%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- add -1 times the 2nd row to the 1st row
![\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%260%260%261%2F4%260%263%5C%5C0%261%260%269%2F4%26-4%265%5C%5C0%260%261%26-3%2F2%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- <em>Find the solutions set and put in vector form.</em>
<u>Interpret the reduced row echelon form:</u>
The reduced row echelon form of the augmented matrix is
![\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7Cc%7D1%260%260%261%2F4%260%263%5C%5C0%261%260%269%2F4%26-4%265%5C%5C0%260%261%26-3%2F2%261%26-3%5Cend%7Barray%7D%5Cright%5D)
which corresponds to the system:

We can solve for <em>z:</em>
<em>
</em>
and replace this value into the other two equations
<em>
</em>

No equation of this system has a form zero = nonzero; Therefore, the system is consistent. The system has infinitely many solutions:
<em>
</em>
where <em>u</em> and <em>w</em> are free variables.
We put all 5 variables into a column vector, in order, x,y,w,z,u
![x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=\left[\begin{array}{c}-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}&\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}&w&\frac{2u}{3}+\frac{2w}{3}+2&u\end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%26w%26z%26u%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7Bu%7D%7B6%7D%20-%5Cfrac%7Bw%7D%7B6%7D%2B%5Cfrac%7B5%7D%7B2%7D%26%5Cfrac%7B5u%7D%7B2%7D-%5Cfrac%7B3w%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7D%26w%26%5Cfrac%7B2u%7D%7B3%7D%2B%5Cfrac%7B2w%7D%7B3%7D%2B2%26u%5Cend%7Barray%7D%5Cright%5D)
Next we break it up into 3 vectors, the one with all u's, the one with all w's and the one with all constants:
![\left[\begin{array}{c}-\frac{u}{6}&\frac{5u}{2}&0&\frac{2u}{3}&u\end{array}\right]+\left[\begin{array}{c}-\frac{w}{6}&-\frac{3w}{2}&w&\frac{2w}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7Bu%7D%7B6%7D%26%5Cfrac%7B5u%7D%7B2%7D%260%26%5Cfrac%7B2u%7D%7B3%7D%26u%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7Bw%7D%7B6%7D%26-%5Cfrac%7B3w%7D%7B2%7D%26w%26%5Cfrac%7B2w%7D%7B3%7D%260%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B2%7D%26%5Cfrac%7B1%7D%7B2%7D%260%262%260%5Cend%7Barray%7D%5Cright%5D)
Next we factor <em>u</em> out of the first vector and <em>w</em> out of the second:
![u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]](https://tex.z-dn.net/?f=u%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B1%7D%7B6%7D%26%5Cfrac%7B5%7D%7B2%7D%260%26%5Cfrac%7B2%7D%7B3%7D%261%5Cend%7Barray%7D%5Cright%5D%2Bw%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B1%7D%7B6%7D%26-%5Cfrac%7B3%7D%7B2%7D%261%26%5Cfrac%7B2%7D%7B3%7D%260%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B2%7D%26%5Cfrac%7B1%7D%7B2%7D%260%262%260%5Cend%7Barray%7D%5Cright%5D)
The vector form of the general solution is
![\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%26w%26z%26u%5Cend%7Barray%7D%5Cright%5D%3Du%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B1%7D%7B6%7D%26%5Cfrac%7B5%7D%7B2%7D%260%26%5Cfrac%7B2%7D%7B3%7D%261%5Cend%7Barray%7D%5Cright%5D%2Bw%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B1%7D%7B6%7D%26-%5Cfrac%7B3%7D%7B2%7D%261%26%5Cfrac%7B2%7D%7B3%7D%260%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B2%7D%26%5Cfrac%7B1%7D%7B2%7D%260%262%260%5Cend%7Barray%7D%5Cright%5D)