The scale of the drawing is 1 cm to 10 feet. This means, every 1 cm of the drawing represents 10 feet in actual.
The trees are 5.2 cm apart in the drawing. So according to the given scale, they will be 5.2 x 10 = 52 feet apart in actual.
So actual bushes be planted at a distance of 52 feet.
First, notice that:
![2\tan (\frac{x}{2})=2\cdot(\pm\sqrt[]{\frac{1-cosx}{1+\cos x})}](https://tex.z-dn.net/?f=2%5Ctan%20%28%5Cfrac%7Bx%7D%7B2%7D%29%3D2%5Ccdot%28%5Cpm%5Csqrt%5B%5D%7B%5Cfrac%7B1-cosx%7D%7B1%2B%5Ccos%20x%7D%29%7D)
And in the denominator we have:

then, we have on the original expression:
![\begin{gathered} \frac{2\tan(\frac{x}{2})}{1+\tan^2(\frac{x}{2})}=\frac{2\cdot\pm\sqrt[]{\frac{1-\cos x}{1+cosx}}}{\frac{2}{1+\cos x}}=\frac{2\cdot(\pm\sqrt[]{1-cosx})\cdot(1+\cos x)}{2\cdot(\sqrt[]{1+cosx})} \\ =(\sqrt[]{1-\cos x})\cdot(\sqrt[]{1+\cos x})=\sqrt[]{(1-\cos x)(1+\cos x)} \\ =\sqrt[]{1-\cos^2x}=\sqrt[]{\sin^2x}=\sin x \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B2%5Ctan%28%5Cfrac%7Bx%7D%7B2%7D%29%7D%7B1%2B%5Ctan%5E2%28%5Cfrac%7Bx%7D%7B2%7D%29%7D%3D%5Cfrac%7B2%5Ccdot%5Cpm%5Csqrt%5B%5D%7B%5Cfrac%7B1-%5Ccos%20x%7D%7B1%2Bcosx%7D%7D%7D%7B%5Cfrac%7B2%7D%7B1%2B%5Ccos%20x%7D%7D%3D%5Cfrac%7B2%5Ccdot%28%5Cpm%5Csqrt%5B%5D%7B1-cosx%7D%29%5Ccdot%281%2B%5Ccos%20x%29%7D%7B2%5Ccdot%28%5Csqrt%5B%5D%7B1%2Bcosx%7D%29%7D%20%5C%5C%20%3D%28%5Csqrt%5B%5D%7B1-%5Ccos%20x%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B1%2B%5Ccos%20x%7D%29%3D%5Csqrt%5B%5D%7B%281-%5Ccos%20x%29%281%2B%5Ccos%20x%29%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B1-%5Ccos%5E2x%7D%3D%5Csqrt%5B%5D%7B%5Csin%5E2x%7D%3D%5Csin%20x%20%5Cend%7Bgathered%7D)
therefore, the identity equals to sinx
The speed of the current in a river is 6 miles per hour
<em><u>Solution:</u></em>
Given that,
Speed of boat in still water = 20 miles per hour
Time taken = 3 hours
Distance downstream = 78 miles
To find: Speed of current
<em><u>If the speed of a boat in still water is u km/hr and the speed of the stream is v km/hr, then: </u></em>
Speed downstream = (u + v) km/hr
Speed upstream = (u - v) km/hr
<em><u>Therefore, speed downstream is given as:</u></em>

We know that,
Speed downstream = (u + v)
26 = 20 + v
v = 26 - 20
v = 6 miles per hour
Thus speed of the current in a river is 6 miles per hour
The answer to this question is:-2.15
If the measure of the vertex angle is 30 degrees, then the measures of the base angles are 75 degrees.