The frequency of the pendulum is independent of the mass on the end. (c)
This means that it doesn't matter if you hang a piece of spaghetti or a school bus from the bottom end. If there is no air resistance, and no friction at the top end, and the string has no mass, then the time it takes the pendulum to swing from one side to the other <u><em>only</em></u> depends on the <u><em>length</em></u> of the string.
Answer:
a. P.E = 3430Joules.
b. Workdone = 3430Nm
Explanation:
<u>Given the following data;</u>
Mass = 70kg
Distance = 5m
We know that acceleration due to gravity is equal to 9.8m/s²
To find the potential energy;
Potential energy = mgh
P.E = 70*9.8*5
<em>P.E = 3430J</em>
b. To find the workdone;
Workdone = force * distance
But force = mass * acceleration
Force = 70*9.8
Force = 686 Newton.
Workdone = 686 * 5
<em>Workdone = 3430Nm</em>
Velocity. Since velocity consists of a speed and a direction, acceleration is a change in speed, or direction, or both.
Explanation:
Distance covered by the satellite in 24 hours
s=2πr
=2×3.14×42250=265464.58 km
Therefore speed of satellite,
v=
time taken
distance travelled
=
24×60×60
265464.58
=3.07 km s
−1
Speed = Distance ÷ Time so divide .5 km by .1h. .5 km÷.1h=5 km/h, so the answer is B. 5km/h.