Answer:
The velocity of the ship relative to the earth V = 9.05 
Explanation:
The local ocean current is = 1.52 m/s
Direction
= 40°
Velocity component in X - direction
= 1.52
°
= 1.164 
Velocity component in Y - direction
= 8 + 1.52
°
= 8.97 
The velocity of the ship relative to the earth

Put the values of
and
we get,
⇒ 
⇒ V = 9.05 
This is the velocity of the ship relative to the earth.
Answer:
5,000J
Explanation:
Work = Force x Distance
Distance back and forth is canceled out, so either the answer is + or -
5.0m + 5.0m = 10.0m
500N x 10.0m = 5,000J
Answer:
r = 0m is the Minimum distance from the axis at which the block can remain in place wothout skidding.
Explanation:
From a sum of forces:
where Ff = μ * N and 
N - m*g = 0 So, N = m*g. Replacing everything on the original equation:
(eq2)
Solving for r:

If we analyze eq2 you can conclude that as r grows, the friction has to grow (assuming that ω is constant), so the smallest distance would be 0 and the greatest 1.41m. Beyond that distance, μ has to be greater than 0.83.
Answer:
1) improve the quality of data
2) new system is more simple and elegant
Explanation:
the reason for being selected new system of determining planetary positions are
1) he want to improve the quality of data for having new planetary positioned value.
b) he believed that new system is more simple and elegant for determining planetary positions by both skilled and unskilled user i.e. astronomers and general public
Answer:
1. An increase in the core temperature
2. A decrease in the core radius.
Explanation:
The sun is a Main Sequence star. A Main Sequence star is powered by fusing hydrogen into Helium within its core.
For this fusion to take place, a temperature of at least 10 million Kelvin is required, beyond this point, the fusion rate is directly related to the core temperature. If the temperature increases, the fusion rate will greatly increase.
Something similar happens if the core reduces its radius. This can happen at the end of the star's lifetime, shortly before it becomes a red giant. Once the hydrogen is depleted, the core will start to shrink because the force of gravity, and as it gets smaller, gets more compressed, and its temperature increases. The outer layers of remaining Hydrogen that were outside the core now begin to heat up, and as the core continues to shrink, the star gets hot enough to begin the fusion process again, and the fusion rate can even be higher than it was during the first phase of the star, as the star becomes a Red Giant.