1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnZ [28]
3 years ago
7

se lanza un cuerpo desde el origen con velocidad horizontal de 40 m/s, y con un ángulo de 60º. calcular la máxima altura y el al

cance horizontal.
Physics
1 answer:
EastWind [94]3 years ago
7 0

Answer:

1. h = 244.8 m    

2. x = 564.8 m  

Explanation:

1. La altura máxima se puede calcular usando la siguiente ecuación:

v_{f}^{2} = v_{0}^{2} - 2gh     (1)                        

Where:

v_{f_{y}}: es la velocidad final = 0 (en la altura máxima)  

v_{0_{y}}: es la velocidad inicial horizontal en "y"

g: es la gravedad = 9.81 m/s²          

h: es la altura máxima =?

La velocidad incial en "y" se puede calcular de la siguiente manera:

tan(\theta) = \frac{v_{0_{y}}}{v_{0_{x}}}

v_{0_{y}} = tan(60)*40 m/s = 69.3 m/s                    

Resolviendo la ecuación (1) para "h" tenemos:

h = \frac{v_{0_{y}}^{2}}{2g} = \frac{(69.3 m/s)^{2}}{2*9.81 m/s^{2}} = 244.8 m          

2. Para calcular el alcance horizontal podemos usar la ecuación:

x = v_{x}*t

Primero debemos encontrar el tiempo cuando la altura es máxima (v_{f_{y}} = 0).

v_{f_{y}} = v_{0_{y}} - gt    

t = \frac{v_{0_{y}}}{g} = \frac{69.3 m/s}{9.81 m/s^{2}} = 7.06 s      

Ahora, como el tiempo de subida es el mismo que el tiempo de bajada, el tiempo máximo es:

t_{m} = 2*7.06 s = 14.12 s          

Finalmente, el alcance horizontal es:

x = 40 m/s*14.12 s = 564.8 m                                                            

Espero que te sea de utilidad!

You might be interested in
A long string is pulled so that the tension in it increases by a factor of four. If the change in length is negligible, by what
rusak2 [61]

To solve this problem we will apply the concepts related to wave velocity as a function of the tension and linear mass density. This is

v = \sqrt{\frac{T}{\mu}}

Here

v = Wave speed

T = Tension

\mu = Linear mass density

From this proportion we can realize that the speed of the wave is directly proportional to the square of the tension

v \propto \sqrt{T}

Therefore, if there is an increase in tension of 4, the velocity will increase the square root of that proportion

v \propto \sqrt{4} = 2  

The factor that the wave speed change is 2.

3 0
3 years ago
Three equal charge 1.8*10^-8 each are located at the corner of an equilateral triangle ABC side 10cm.calculate the electric pote
Arlecino [84]

Answer:

If all these three charges are positive with a magnitude of 1.8 \times 10^{-8}\; \rm C each, the electric potential at the midpoint of segment \rm AB would be approximately 8.3 \times 10^{3}\; \rm V.

Explanation:

Convert the unit of the length of each side of this triangle to meters: 10\; \rm cm = 0.10\; \rm m.

Distance between the midpoint of \rm AB and each of the three charges:

  • d({\rm A}) = 0.050\; \rm m.
  • d({\rm B}) = 0.050\; \rm m.
  • d({\rm C}) = \sqrt{3} \times (0.050\; \rm m).

Let k denote Coulomb's constant (k \approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2}.)

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm A})}.

Electric potential due to the charge at \rm B: \displaystyle \frac{k\, q}{d({\rm B})}.

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm C})}.

While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.

Hence, the electric field at the midpoint of \rm AB due to all these three charges  would be:

\begin{aligned}& \frac{k\, q}{d({\rm A})} + \frac{k\, q}{d({\rm B})} + \frac{k\, q}{d({\rm C})} \\ &= k\, \left(\frac{q}{d({\rm A})} + \frac{q}{d({\rm B})} + \frac{q}{d({\rm C})}\right) \\ &\approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2} \\ & \quad \quad \times \left(\frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{\sqrt{3} \times (0.050\; \rm m)}\right) \\ &\approx 8.3 \times 10^{3}\; \rm V\end{aligned}.

4 0
3 years ago
Take a close look at the energy transfers and transformations shown in the above diagram. Which type of energy is transformed in
Elanso [62]

Answer:

kinetic energy

Explanation:

a certain amount of energy is transferred by the kick. The ball gains an equal amount of energy, mostly in the form of kinetic energy.

4 0
3 years ago
Read 2 more answers
Briefly describe the formation of the planets from the solar nebula
saul85 [17]
<span>The formation of the Solar System began 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a proto-planetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.


Hope it helped
</span>
6 0
3 years ago
What is the kinetic energy of a an 80kg football player running at 8 m/s?
Ugo [173]
In the question it is already given that the football player is 80 kg.
Then the mass of the football player = 80 kg
Velocity at which the football player is running = 8 m/s
<span>Kinetic Energy = 0.5 • mass • square of velocity
Now we have to put the known data in this equation to find the actual velocity of the footballer.
</span> <span></span>So
Kinetic Energy of the footballer = 0.5 * 80 * (8 * 8)
                                                 = 0.5 * 80 * 64
                                                 = 2560
So the Kinetic energy of the footballer is 2560 joules


4 0
3 years ago
Other questions:
  • A cube is 4.4 cm on a side, with one corner at the origin. Part 1 (a) What is the unit vector pointing from the origin to the di
    11·1 answer
  • When reading a buret, where is the initial and final volumes taken from? The top (where the zero is) or the bottom?. If the bure
    9·1 answer
  • Explain how the velocity of an object changes in respect to time.
    11·2 answers
  • The length of some fish are modeled by a von Bertalanffy growth function. For Pacific halibut, this function has the form L(t) =
    7·1 answer
  • A radio station transmits to a receiving antenna. The radio wave sent is a
    11·1 answer
  • Foraging bees often move in straight lines away from and toward their hives. Suppose a bee starts at its hive and flies 680 m du
    10·1 answer
  • Xavier is roller skating at 14 km/h and tosses a set of ke<br> relative to the ground is<br> km/h.
    9·1 answer
  • What is the weight of a 82.1 kg object on Jupiter, where the acceleration due to gravity is 24.5 m/s2?
    15·1 answer
  • What is the meaning of thermostats<br>for 40 pts​
    8·2 answers
  • 3. When the procedure is repeated with a third line how will it distinguish whether the location of the center of gravity is acc
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!