1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnZ [28]
3 years ago
7

se lanza un cuerpo desde el origen con velocidad horizontal de 40 m/s, y con un ángulo de 60º. calcular la máxima altura y el al

cance horizontal.
Physics
1 answer:
EastWind [94]3 years ago
7 0

Answer:

1. h = 244.8 m    

2. x = 564.8 m  

Explanation:

1. La altura máxima se puede calcular usando la siguiente ecuación:

v_{f}^{2} = v_{0}^{2} - 2gh     (1)                        

Where:

v_{f_{y}}: es la velocidad final = 0 (en la altura máxima)  

v_{0_{y}}: es la velocidad inicial horizontal en "y"

g: es la gravedad = 9.81 m/s²          

h: es la altura máxima =?

La velocidad incial en "y" se puede calcular de la siguiente manera:

tan(\theta) = \frac{v_{0_{y}}}{v_{0_{x}}}

v_{0_{y}} = tan(60)*40 m/s = 69.3 m/s                    

Resolviendo la ecuación (1) para "h" tenemos:

h = \frac{v_{0_{y}}^{2}}{2g} = \frac{(69.3 m/s)^{2}}{2*9.81 m/s^{2}} = 244.8 m          

2. Para calcular el alcance horizontal podemos usar la ecuación:

x = v_{x}*t

Primero debemos encontrar el tiempo cuando la altura es máxima (v_{f_{y}} = 0).

v_{f_{y}} = v_{0_{y}} - gt    

t = \frac{v_{0_{y}}}{g} = \frac{69.3 m/s}{9.81 m/s^{2}} = 7.06 s      

Ahora, como el tiempo de subida es el mismo que el tiempo de bajada, el tiempo máximo es:

t_{m} = 2*7.06 s = 14.12 s          

Finalmente, el alcance horizontal es:

x = 40 m/s*14.12 s = 564.8 m                                                            

Espero que te sea de utilidad!

You might be interested in
Does this curved graph show a function explain how you know
pochemuha

Answer:

No; the graph fails the vertical line test.

The vertical line test is a tool used to determine if we have a function. If we can draw a single straight vertical line through more than one point on the red curve, then the graph is said to have failed the vertical line test. Consequently, this leads to the relation not being a function.

For this circle graph, we can draw a vertical line through more than one point, which is why we don't have a function here.

Put another way, there are inputs (x) that produce more than one output (y), so that's why we don't have a function.

-BBBM

8 0
3 years ago
a 2,000-kilogram railroad car moving at 8m/s to the right collides with a 6,000-kilogram railroad car moving at 3m/s to the west
astra-53 [7]

A freight car of mass 20,000 kg moves along a frictionless level railroad track ... After the push the skateboarder II moves with a velocity of 2 m/s to ... After the collision the cars stick to each other and ... diver jumps with a velocity of 3 m/s in opposite ... A 10 kg object moves at a constant velocity 2 m/s to the right and collides

3 0
3 years ago
YO CAN ANYONE DO THE BLANK COLUMN AND THE QUESTION PART RQ PLS!!
VikaD [51]

Answer:

stryo:  1

wood: 1

ice: 1

brick: 2

aluminum: 2.7

Explanation:

d= mass/ total volume

(fyi: for aluminum, they did the subtraction wrong to find the total volume. it is actually 5 or 5.00)

6 0
3 years ago
A mass is oscillating with amplitude A at the end of a spring.
Dmitry_Shevchenko [17]

A) x=\pm \frac{A}{2\sqrt{2}}

The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):

E=\frac{1}{2}kA^2 (1)

where k is the spring constant.

The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2 (2)

where x is the displacement, m the mass, and v the speed.

We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

U=\frac{1}{3}K

Using (2) we can rewrite this as

U=\frac{1}{3}(E-U)=\frac{1}{3}E-\frac{1}{3}U\\U=\frac{E}{4}

And using (1), we find

U=\frac{E}{4}=\frac{\frac{1}{2}kA^2}{4}=\frac{1}{8}kA^2

Substituting U=\frac{1}{2}kx^2 into the last equation, we find the value of x:

\frac{1}{2}kx^2=\frac{1}{8}kA^2\\x=\pm \frac{A}{2\sqrt{2}}

B) x=\pm \frac{3}{\sqrt{10}}A

In this case, the kinetic energy is 1/10 of the total energy:

K=\frac{1}{10}E

Since we have

K=E-U

we can write

E-U=\frac{1}{10}E\\U=\frac{9}{10}E

And so we find:

\frac{1}{2}kx^2 = \frac{9}{10}(\frac{1}{2}kA^2)=\frac{9}{20}kA^2\\x^2 = \frac{9}{10}A^2\\x=\pm \frac{3}{\sqrt{10}}A

3 0
3 years ago
Which of the following is an example of changing physical capital?
rosijanka [135]
<span>C. switching to cheaper fuel. Physical capital pertains to non-human asset. Under this type were the asset that use to process goods and services like machinery, buildings etc.</span>
3 0
3 years ago
Read 2 more answers
Other questions:
  • An object's acceleration is given by a(t)=a(t)=60t m/s260t m/s2 . if it begins at rest, how far has it gone after 10 seconds?
    8·1 answer
  • A point charge is placed at the center of a spherical Gaussian surface. Is changed (a) if the surface is replaced by a cube of t
    5·1 answer
  • A car starts from rest and travels for 5.0 s with a uniform acceleration of +1.5 m/s2 . The driver then applies the brakes, caus
    13·1 answer
  • Can you think of other factors that may affect a carrying capacity
    15·1 answer
  • Ytuugtfghrddfghjiuyhhffdfvhj
    10·2 answers
  • Automobile A and B are initially 30 m apart travelling in adjacent highway lanes at speeds VA = 14.4 km/hr., VB 23.4 km/hr. at t
    9·1 answer
  • A 200 kg car is travelling at 33m/s. what is the kinectic energy of the car​
    5·2 answers
  • Part D
    7·1 answer
  • A car has an initial velocity of 20m/s and an average velocity of 30m/s.
    5·1 answer
  • A cat jumps from a balcony. About how fast is the cat moving after 1.5 s?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!