Answer:
a) It is moving at
when reaches the ground.
b) It is moving at
when reaches the ground.
Explanation:
Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:
(1)
with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:
(2)
with m the mass and v the velocity.
Using (2) on (1):
(3)
In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):
(4)
Using (4) on (3):
(5)
That's the equation we're going to use on a) and b).
a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:


b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:

Solving for initial velocity (when the boulder left the volcano):


Heat<span> flux is a quantitative, vectorial representation of </span>heat-flow<span> through a surface. ...</span>Heat transfer<span> is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and </span>transfer<span> of energy by phase changes.</span>
Answer:Same magnitude
Explanation:
When ball is dropped from shoulder height h then velocity at the bottom is given by

if it makes elastic collision then it will acquire the same velocity and riser up to the same height
If m is the mass of ball then impulse imparted is given by


Thus impulse imparted by gravity and Floor will have same magnitude of impulse but direction will be opposite to each other.
Answer:
Explanation:
I-V graph always represent a straight line
Answer:
(d) not enough info
Explanation:
because it doesn't specify where the strings are attached
if it was the two ends of the rod then T1 would be equal to T2