James delivered 3/8 of the newspaper his route in the first hour and 4/5 of the rest in the second hour. What fraction of the ne
wspaper did James deliver in the second hour?
1 answer:
Answer:
1/2
Step-by-step explanation:
Remaining fraction will be (1-3/8)=5/8
Given that in the second hour he delivered 4/5 of 5/8, then the fraction delivered in the second hour will be:
4/5 of 5/8
=4/5×5/8
=1/2
He delivered 1/2 (in fraction)
You might be interested in
It will be A) 1/7 because using the rise over run meathod you get 1/7 and it will be possitive
keeping in mind that anything raised at the 0 power, is 1, with the sole exception of 0 itself.
![\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{(r^{-7}b^{-8})^0}{t^{-4}w}\implies \cfrac{1}{t^{-4}w}\implies \cfrac{1}{t^{-4}}\cdot \cfrac{1}{w}\implies t^4\cdot \cfrac{1}{w}\implies \cfrac{t^4}{w}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bnegative%20exponents%7D%0A%5C%5C%5C%5C%0Aa%5E%7B-n%7D%20%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5En%7D%0A%5Cqquad%20%5Cqquad%0A%5Ccfrac%7B1%7D%7Ba%5En%7D%5Cimplies%20a%5E%7B-n%7D%0A%5Cqquad%20%5Cqquad%20a%5En%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5E%7B-n%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%28r%5E%7B-7%7Db%5E%7B-8%7D%29%5E0%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7D%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20t%5E4%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20%5Ccfrac%7Bt%5E4%7D%7Bw%7D%20)
You want to find the volume inside the hemisphere
(i.e. inside the sphere but above the plane
) and outside the cylinder
. Call this region
.
In cylindrical coordinates, we have



(where
)


1 in 10 is the probability of two people picking the same number.