Answer:
Explanation:
<u>1) Chemical equation (given)</u>
<u>2) Theoretical yield</u>
<u>a) Convert mass of NaHCO₃ to moles:</u>
- n = mass in grams / molar mass
- molar mass = 84.007 g/mol
- n = 2.36 g / 84.007 g/mol = 0.02809 mol
<u>b) Mole ratio:</u>
- 2 mol NaHCO₃ : 1 mol H₂CO₃
<u>c) Proportionality:</u>
- 2 mol NaHCO₃ / mol H₂CO₃ = 0.02809 mol NaHCO₃ / x
⇒ x = 0.2809 / 2 mol H₂CO₃ = 0.01405 mol H₂CO₃
<u>3) Actual yield</u>
<u>a) Mass balance</u>: 2.36 g - 1.57 g = 0.79 g
<u>b) Convert 0.79 g of carbonic acid to number of moles</u>:
- n = mass in grams / molar mass
- n = 0.79 g / 62.03 g/mol = 0.01274 mol
<u>4) Percentage yield, y (%)</u>
- y (%) = actual yield / theoretical yield × 100
- y (%) = 0.1274 mol / 0.1405 mol × 100 = 90.68%
The answer must show 3 significant figures, so y(%) = 90.7%.
Answer:
A
Explanation:
Am Inference is an educated guess, or a guess using prior knowledge
Answer:
7.71 atm
Explanation:
Given the following data:





According to the ideal gas law, we know that the product between pressure and volume of a gas is equal to the product between moles, the ideal gas law constant and the absolute temperature:

Since the temperature and the ideal gas constant are constants, as well as the fixed container volume of 5 L, we may rearrange the equation as:

This means for two conditions, we'd obtain:

Given:



Solve for the final pressure:

Now, according to the Dalton's law of partial pressures, the partial pressure is equal to the total pressure multiplied by the mole fraction of a component:

Knowing that:

And:

The equation becomes:

Substituting the variables:
