A feature that an iron metal has is a sea of electrons
Answer:
The answer to your question is: ΔH = -283 kJ/mol, first option
Explanation:
Reaction
CO + O₂ ⇒ CO₂
ΔH = ∑H products - ∑H products
ΔH = -393.5 - (-110.5 + 0)
ΔH = -393.5 + 110.5
ΔH = -283 kJ/mol
Answer:
In this case, the system doesn't be affected by the pressure change. This means that nothing will happen
Explanation:
We can answer this question applying the Le Chatelier's Principle. It says that changes on pressure, volume or temperature of an equilibrium reaction will change the reaction direction until it returns to the equilibrium condition again.
The results of these changes can define as:
Changes on pressure: the reaction will move depending the quantity of moles on each side of the reaction
Changes on temperature: The reaction will move depending on if it's endothermic or exothermic
Changes on volume: The reaction will move depending the limit reagent and the quantity of moles on each side of the reaction
In the exercise, they mention a change on pressure of the system at constant temperature (that means the temperature doesn't change). As Le Chatelier Principle's says, we must analyze what happens if the pressure increase or decrease. If pressure increase the reaction will move on the side that have less quantity of moles, otherwise, if the pressure decreases the reaction will move to the side that have more quantity of moles. In this case, we can see that both sides of the equation have the same number of moles (2 for the reactants and 2 for the products). So, in this case, we can conclude that, despite the change on pressure (increase or decrease), nothing will happen.
Answer:
The answer is in the photo
Explanation:
I hope that is useful for you :)
Answer:
C) 2 Na + 2 H2O → 2 NaOH + H2.
Explanation:
Hello there!
In this case, according to the given chemical reactions, it is possible to firstly understand that a single displacement reaction is characterized by the presence of a single element as the first reactant and a compound as the second one, thus, yielding a compound as the first product and a single element as the second one.
In such a way, according to the given choices, it possible to note that C) 2 Na + 2 H2O → 2 NaOH + H2 is the only one with the aforementioned condition as the element at the reactants side is Na and at the products side is H2.
Best regards!