Answer:
2.56 grams of H₂S is needed to produce 18.00g of PbS if the H2S is reacted with an excess (unlimited) supply of Pb(CH₃COO)₂
Explanation:
The balanced reaction is:
Pb(CH₃COO)₂ + H₂S → 2 CH₃COOH + PbS
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) they react and produce:
- Pb(CH₃COO)₂: 1 mole
- H₂S: 1 mole
- CH₃COOH: 2 moles
- PbS: 1 mole
In this case, to know how many grams of H₂S are needed to produce 18.00 g of PbS, it is first necessary to know the molar mass of the compounds H₂S and PbS and then to know how much it reacts by stoichiometry. Being:
- H: 1 g/mole
- S: 32 g/mole
- Pb: 207 g/mole
The molar mass of the compounds are:
- H₂S: 2* 1 g/mole + 32 g/mole= 34 g/mole
- PbS: 207 g/mole + 32 g/mole= 239 g/mole
So, by stoichiometry they react and are produced:
- H₂S: 1 mole* 34 g/mole= 34 g
- PbS: 1 mole* 239 g/mole= 239 g
Then the following rule of three can be applied: if 239 grams of PbS are produced by stoichiometry from 34 grams of H₂S, 18 grams of PbS from how much mass of H₂S is produced?

mass of H₂S= 2.56 grams
<u><em>2.56 grams of H₂S is needed to produce 18.00g of PbS if the H2S is reacted with an excess (unlimited) supply of Pb(CH₃COO)₂</em></u>
I’m not your just blind. I’m sorry
Answer:
No
Explanation:
In the left side of the reaction, there are 6O and 3C but on the right side, there are only 1C and 2O
Matter that has a definite volume but no definite shape is a liquid.
Answer:
Dispersion forces- Xe, CH4
Dipole-dipole forces-CHCl3
Hydrogen Bonding-HBr, NH3, CH3COOH
Explanation:
Gases and nonpolar molecules posses only dispersion forces. Polar covalent compounds posses dipole- dipole forces. When hydrogen is bonded to a highly electronegative atom, hydrogen bonding results. These account for the arrangement of answers above.