There is 67 gram of CO2 produced in the Octane reaction which is come after 2 SF
The picture of Au₃N is attached below.
The first part of the picture shows the formation of Au and N ions.
Formation of Au⁺¹ :
As Gold has one valence electron in 6s¹ therefore, it will loose it to form Au⁺¹. In case of Au₃N three atoms of Au looses three electrons to form three Au⁺¹ ions.
Formation of N⁻³ :
As Nitrogen has 5 valence elctrions therefore, it will gain three electrons that lost by Au to form Nitrite (i.e. N⁻³)
Formation of Au₃N:
Three cations of Au⁺ combines with one anion of N⁻³ to form a neutral ionic compound i.e. Au₃N as shown in second part of the picture.
I think they can change into ions
Answer:
mass of HCl = 243.5426 grams
Explanation:
1- we will get the mass of the reacting gold:
volume of gold = length * width * height
volume of gold = 3.2 * 3.8 * 2.8 = 34.048 cm^3 = 34.048 ml<span>
density = mass / volume
Therefore:
mass = density * volume
mass of gold = </span>19.3 * 34.048 = 657.1264 grams
2- we will get the number of moles of the reacting gold:
number of moles = mass / molar mass
number of moles = 657.1264 / 196.96657
number of moles = 3.3362 moles
3- we will get the number of moles of the HCl:
First, we will balanced the given equation. The balanced equation will be as follows:
Au + 2HCl ......> AuCl2 + H2
This means that one mole of Au reacts with 2 moles of HCl.
Therefore 3.3362 moles will react with 2*3.3362 = 6.6724 moles of HCL
4- we will get the mass of the HCl:
From the periodic table:
molar mass of H = 1 gram
molar mass of Cl = 35.5 grams
Therefore:
molar mass of HCl = 1 + 35.5 = 36.5 grams/mole
number of moles = mass / molar mass
Therefore:
mass = number of moles * molar mass
mass of HCl = 6.6724 * 36.5
mass of HCl = 243.5426 grams
Hope this helps :)
The given example is a chemical reaction.
The contents (separated as reactants and products) :

The written reaction is :

<em>I hope it helped you solve the problem.</em>
<em>Good luck on your studies!</em>