D)100%
Every single one has the dominate gene so all the offspring will get it
I hope that helps!
Light travels at precisely <span>299,792,458 metres every second (abbreviated to 3 x 10^8 metres every second but let's be precise)
There are 60 seconds in every minute (</span><span>299 792 458 x 60 = 17,987,547,480m)
60 minutes in every hour (17,987,547,480 x 60 = 1,079,252,849,000m)
96 hours in 4 days (</span><span>1,079,252,849,000 x 96 = 10,360,827,350,000m)
</span><span>Now let's convert to km to make this number (slightly) more manageable
(</span>10,360,827,350,000 / 1000 = <span>103,608,273,500km)
</span>Light travels <span>103,608,273,500km in 4 days - that's the equivalent of going around the equator of the earth 813,124 times!</span><span>
</span>
Answer:
No. of protons = 34
Explanation:
First we need to calculate the number of electrons in one mole of the the element:
No. of electrons per mole = Total Mass of Electrons/Mass of 1 Electron
No. of electrons per mole = (18.65 x 10⁻³ g)/(9.109 x 10⁻²⁸ g)
No. of electrons per mole = 2.04 x 10²⁵ electrons/mol
Now, we calculate the no. of electrons in 1 atom:
No. of electrons per atom = No. of Electrons per mole/No. of atoms per mole
No. of electrons per atom = (2.04 x 10²⁵ electrons/mol)/(6.022 x 10²³ atoms/mol)
No. of electrons per atom = 34 electrons/atom
Since, the no. of protons in a pure element are equal to the number of electrons. Therefore,
<u>No. of protons = 34</u>
For this case, Only 1 isotope would be present, i.e. the principal element with mass M=13 and then one isotope at mass M+2. <span>We are assuming that the principal element is the one that is the lowest mass - by definition, an isotope is one where there are additional neutrons - hence the mass increases, but the proton count is the same.
</span>