Answer:
a) 29.36 m
b) 2.44 s
c) 2.57 s
d) 25.117 m/s
Explanation:
t = Time taken
u = Initial velocity = 24 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
b)

Time taken by the ball to reach the highest point is 2.44 seconds
a)

The highest point reached by the ball above its release point is 29.36 m
c) Total height is 3+29.35 = 32.35 m

The ball reaches the ground 2.57 seconds after reaching the highest point
d)

The ball will hit the ground at 25.2117 m/s
Answer:
a block sliding down a ramp,a leaf blowing across a field
Answer:
3.536*10^-6 C
Explanation:
The magnitude of the charge is expresses as Q = CV
C is the capacitance of the capacitor
V is the voltage across the capacitor
Get the capacitance
C = ε0A/d
ε0 is the permittivity of the dielectric = 8.84 x 10-12 F/m
A is the area = 0.2m²
d is the plate separation = 0.1mm = 0.0001m
Substitute
C = 8.84 x 10-12 * 0.2/0.0001
C = 1.768 x 10-8 F
Get the potential difference V
Using the formula for Electric field intensity
E = V/d
2.0 × 10^6 = V/0.0001
V = 2.0 × 10^6 * 0.0001
V = 2.0 × 10^2V
Get the charge on each plate.
Q = CV
Q = 1.768 x 10-8 * 2.0 × 10^2
Q = 3.536*10^-6 C
Hence the magnitude of the charge on each plate should be 3.536*10^-6 C
Answer:
The magnitude of the applied torque is 
(e) is correct option.
Explanation:
Given that,
Mass of object = 3 kg
Radius of gyration = 0.2 m
Angular acceleration = 0.5 rad/s²
We need to calculate the applied torque
Using formula of torque

Here, I = mk²

Put the value into the formula



Hence, The magnitude of the applied torque is 
Answer:
0.0675 seconds
Explanation:
From the question,
We apply newton's second law of motion
F = m(v-u)/t.................... Equation 1
Where F = force exert by the brake, v = final speed, u = initial speed m = mass of the bicycle, t = time.
make t the subject of the equation
t = m(v-u)/F................... Equation 2
Given: m = 180 kg, u = 6.0 m/s, v = 0 m/s (comes to stop), F = -1600 N ( agianst the dirction of motion)
Substitute these value into equation 2
t = 180(0-6.0)/-1600
t = -1080/-1600
t = 0.0675 seconds.