The characteristics of the velocity vector used to find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Newton's Second Law establishes a relationship between force, mass and acceleration of bodies.
<h3>Centripetal acceleration.
</h3>
In the case of circular motion there is a constant change in the direction of the velocity vector, even when its module remains constant, this change in direction points towards the center of the circle, so that the module is constant.
They indicate that the satellite is moving counterclockwise, therefore the speed must go to the left (counterclockwise) tangential to the circle.
In conclusion using the characteristics of the velocity vector we can find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Learn more about centripetal acceleration here: brainly.com/question/25243603
<span>The formula for frequency is speed of light divided by wavelength. 650 nm represents the wavelength and 3x10^8 m/s is the speed of light. If you convert 650nm to meters you get 6.5x10^-7 m so you can divide using the formula above, giving you 4.6x10^14 1/s or Hz, the unit of frequency in Physics.</span>
Answer:
Man will not slide down
Explanation:
Given:
Coefficient of static friction = 0.25
Angle = 13°
Computation:
Man will slide down if
tan13° > Coefficient of static friction
Tan 13 = 0.23
So,
0.23 < 0.25
So,
Man will not slide down
Answer:
D. Wind turbines take up a lot of space.
Explanation:
In wind turbines the kinetic energy received by the air molecules is converted into electrical energy by the use of turbines
So here in order to get more kinetic energy from air we need more crossectional area of the wind mill to interact with the air
So here we need the large size of turbines
so this is the main disadvantage of the wind turbines because it needs large area to install the whole setup also the efficiency of this turbine is small so it needs large number of wind mills to setup good output power
so correct answer will be
D. Wind turbines take up a lot of space.
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>