.0075 is the answer when u duvide
Answer:
p ∈ IR - {6}
Step-by-step explanation:
The set of all linear combination of two vectors ''u'' and ''v'' that belong to R2
is all R2 ⇔
And also u and v must be linearly independent.
In order to achieve the final condition, we can make a matrix that belongs to
using the vectors ''u'' and ''v'' to form its columns, and next calculate the determinant. Finally, we will need that this determinant must be different to zero.
Let's make the matrix :
![A=\left[\begin{array}{cc}3&1&p&2\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%26p%262%5Cend%7Barray%7D%5Cright%5D)
We used the first vector ''u'' as the first column of the matrix A
We used the second vector ''v'' as the second column of the matrix A
The determinant of the matrix ''A'' is

We need this determinant to be different to zero


The only restriction in order to the set of all linear combination of ''u'' and ''v'' to be R2 is that 
We can write : p ∈ IR - {6}
Notice that is
⇒


If we write
, the vectors ''u'' and ''v'' wouldn't be linearly independent and therefore the set of all linear combination of ''u'' and ''b'' wouldn't be R2.
Answer:
$8.00 to $8.49
Step-by-step explanation:
a large can of fancy popcorn is $8.17 which means that $8.17 is not higher or lower of $8.00 or $8.49.
Answer:
4.295
Step-by-step explanation:
there ya gooooooooo
By the graph of a straight line through the origin with a slope equal to the unit rate