Answer:
A:
Explanation:
The earth rotates on it's axis every 24 hours not revolves.
Imagine rotation as a top spinning on the ground. revolving means if you tied a string to the top and spun it around your body in a circle. (hope this helps:)
Answer:
The acceleration of the player is - 4.9 m/s²
Explanation:
The given is:
1. The mass of the player is 55 kg
2. His initial speed is 4.6 m/s
3. The coefficient of the kinetic fraction between the player and the
ground is 0.50
We need to find the player acceleration
According to Newton's Law
→ ∑ forces in direction of motion = mass × acceleration
There is only the friction force opposite to the motion
→ Friction force = μR
where μ is the coefficient of friction and R is the normal reaction
→ The normal reaction R = mg
where m is the mass and g is the acceleration of gravity
→ m = 55 kg , g = 9.8 m/s²
→ R = 55 × 9.8 = 539 N
→ ∑ F = - μR
→ - μR = m × a
→ μ = 0.5 , R = 539 N , m = 55
→ -(0.5)(539) = 55 × a
→ - 269.5 = 55 a
Divide both sides by 55
→ a = - 4.9 m/s²
The acceleration of the player is - 4.9 m/s²
Learn more:
You can learn more about Newton's law in brainly.com/question/11911194
#LearnwithBrainly
Answer:
(A) 374.4 J
(B) -332.8 J
(C) 0 J
(D) 41.6 J
(E) 351.8 J
Explanation:
weight of carton (w) = 128 N
angle of inclination (θ) = 30 degrees
force (f) = 72 N
distance (s) = 5.2 m
(A) calculate the work done by the rope
- work done = force x distance x cos θ
- since the rope is parallel to the ramp the angle between the rope and
the ramp θ will be 0
work done = 72 x 5.2 x cos 0
work done by the rope = 374.4 J
(B) calculate the work done by gravity
- the work done by gravity = weight of carton x distance x cos θ
- The weight of the carton = force exerted by the mass of the carton = m x g
- the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.
work done by gravity = 128 x 5.2 x cos 120
work done by gravity = -332.8 J
(C) find the work done by the normal force acting on the ramp
- work done by the normal force = force x distance x cos θ
- the angle between the normal force and the ramp is 90 degrees
work done by the normal force = Fn x distance x cos θ
work done by the normal force = Fn x 5.2 x cos 90
work done by the normal force = Fn x 5.2 x 0
work done by the normal force = 0 J
(D) what is the net work done ?
- The net work done is the addition of the work done by the rope, gravitational force and the normal force
net work done = 374.4 - 332.8 + 0 = 41.6 J
(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal
- work done by the rope= force x distance x cos θ
- the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp
work done = 72 x 5.2 x cos 20
work done = 351.8 J
Answer:
a) 
b) 
c) 
d) 
e) 
Explanation:
At that energies, the speed of proton is in the relativistic theory field, so we need to use the relativistic kinetic energy equation.
(1)
Here β = v/c, when v is the speed of the particle and c is the speed of light in vacuum.
Let's solve (1) for β.

We can write the mass of a proton in MeV/c².

Now we can calculate the speed in each stage.
a) Cockcroft-Walton (750 keV)



b) Linac (400 MeV)



c) Booster (8 GeV)



d) Main ring or injector (150 Gev)



e) Tevatron (1 TeV)



Have a nice day!