Answer:
Motion with constant velocity of magnitude 1 m/s (uniform motion) for 4 seconds in a positive direction and then for 2 seconds uniform motion with constant velocity of magnitude 3 m/s in reverse direction .
Explanation:
The graph shows a constant velocity of 1 m/s for 4 seconds in the positive direction. After that, between 4 seconds and 6 seconds, the object reverses its motion with constant velocity of magnitude 3m/s.
The work done by the electric force to move a 1 c charge from a to b is
<em>(the voltage at 'b' compared to 'a') volts .</em>
<em></em>
That's because "volt" means "Joule per Coulomb" .
Answer:
Maximum torque on the wire is 
Explanation:
It is given that,
Diameter of the wire, d = 11.1 cm = 0.111 m
Radius of wire, r = 0.0555 m
Magnetic field, 
Current, I = 5 A
We need to find the maximum torque on the wire. Torque is given by :

Torque is maximum when, 



or

So, the maximum toque on the wire is
. Hence, this is the required solution.
Answer:
a.2.5x 10^3 m/s
b.mr=48kg/s
Explanation:
A rocket is moving away from the solar system at a speed of 7.5 ✕ 103 m/s. It fires its engine, which ejects exhaust with a speed of 5.0 ✕ 103 m/s relative to the rocket. The mass of the rocket at this time is 6.0 ✕ 104 kg, and its acceleration is 4.0 m/s2. What is the velocity of the exhaust relative to the solar system? (B) At what rate was the exhaust ejected during the firing?
velocity of the exhaust relative to the solar system
velocity of the rocket -velocity of the exhaust relative to the rocket.
7.5 ✕ 103 m/s-5.0 ✕ 103 m/s
2.5x 10^3 m/s
. b we will look for the thrust of the rocket
T=ma
T=6.0 ✕ 104 kg*4.0 m/s2
T=2.4*10^5N
f=mass rate *velocity of the exhaust
T=2.4*10^5N=mr*5.0 ✕ 10^3 m/s
mr=2.4*10^5N/5.0 ✕ 10^3
mr=48kg/s