The arrangement of electron pairs around CH4 and NH3, According to the VSEPR model is the same, because in each case there are the same number of electron pairs around the central atom. So the NH3 and CH4 arrangement of electron pairs is the same because in each case there are the same number of electron pairs around the central atom.
I: Current
V: Voltage
R: resistance
you’re welcome ;)
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
The factor that determine how water cycles on earth is the forms that water is found in[solid, liquid and gas].
The pressure of the gas used in the weather balloon increases to expand the balloon.
Explanation:
- Weather balloons contain the boxes where the weather measurement instruments are present that is attached to the large balloon.
- Weather balloon uses gases like Hydrogen or Helium. When the weather balloon rises to the atmosphere, the air pressure decreases. This leads to the increase in the pressure of hydrogen or Helium gas used in the weather balloon. This expands the balloon.
- The gas particles hits the balloon container and generates the pressure. The increase of pressure thus helps the weather balloon to move in a constant speed through the atmosphere.