Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
Answer: -
Following are five examples of structures with the chemical formula C₆H₁₂
Compound A is Hexene.
Compound B is 2-Hexene.
Compound C is 3-Hexene.
Compound D is Cyclohexane.
Compound E is Methylcyclopentane.
As we can see Hexene, 2- Hexene and 3-Hexene all have double bonds.
Cyclohexane and Methylcyclopentane contains a ring.
Answer:
A. Atoms randomly crashing into each other
E. The force of one object pushing against the force of another object.
Explanation:
Forces can be classified into two categories based upon the the mode of transfer or application:
1. Contact forces
2. Non-contact forces
Contact forces are the ones which require the physical contact of the matter to get transferred and tend to create the affect. Whereas non-contact forces have the field property which transfers the affect of force from one point to another without any physical contact of the matter or the medium.
- Atoms crashing onto each other have some mass and velocity which upon collision impacts the other atoms exerts a contact force.
- The interaction between the charged particles due to their charges is always due to the electric field be it electron or proton, be it within an atom or out of an atom.
- The force between any two objects pushing or pulling each other is also possible only due to contact.
It's a chemical change because it's changing the object's property.
The average sedentary male will achieve a VO2 max of approximately 35 to 40 mL/Kg/min. And the average sedentary female will score a VO2 max of between 27 an 30 mL/Kg/min.