Answer:
0.034M HCl is the concentration of the diluted solution
Explanation:
You take, initially, 25.00mL of the 0.136M HCl. Then, you dilute the solution to 100.00mL. The solution is diluted:
100.00mL / 25.00mL = 4. The solution was diluted 4 times.
That means the concentration of the diluted solution is:
0.136M / 4 =
<h3>0.034M HCl is the concentration of the diluted solution</h3>
Answer:
Polymerization.
Explanation:
Polymerization can be defined as a type of chemical reaction in which molecules that are relatively small in size chemically combine to form a huge chain of molecules.
Simply stated, polymerization refers to a chemical reaction where two or more smaller molecules react to produce larger molecules of the same network or repetitive structural units.
In polymerization, the relatively small molecules are generally referred to as monomers while the larger molecules they produce are known as polymers.
Polymerization is given by the chemical formula;
nA -----> A(n).
In this scenario, Luis uses a stencil to repeat the same design on each wall to form one long grapevine with a bunch of grapes every foot along its length.
Hence, the type of chemical reaction this best model is polymerization because it involved repeating the same design (monomers) to form a long grapevine with a bunch of grapes (polymers).
Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2
Answer:
yes its the correct one like bruhh find out ur self nah jk have a good day
Explanation:
I think the correct answer from the choices listed above is option C. Chemical reaction is the process <span>that changes one set of chemicals into another set of chemicals. In a chemical reaction, old bonds are broken down forming new bonds therefore new </span>substances<span> with new properties.</span>