No, its D
Just look at the rounds mentioned and subtract the scores from higher round with lower round.
Look at A: round 2 score - round 1 score = -2?
-3 -1 = -4 change, not -2 change so it is wrong
Look at B: round 3 score - round 1 score =-1?
-2-1 =-3 change, not -1 change so it is wrong
Look at C: round 3 score - round 2 score =-1?
-2 -(-3) = 1 change, not -1 change so it is wrong
Look at D: round 3 score - round 1 score =-3?
-2-1 = -3 change, matches with -3 so it is correct.
Answer:
4/663
Step-by-step explanation:
There are 4 queens and 4 kings in a deck. Drawing a queen would be 4/52. Drawing a king afterwards with replacing the queen would be 4/51 because you took a queen but didn't replace that one queen card so the deck has only 51 cards left after you drew the queen. Drawing a queen would not affect your chance of drawing a king card, it will only affect the total number of cards left because you didn't replace the card afterwards. 4*4=16;52*51=2652. 16/2652 can be simplified to 4/663 by dividing 4 to both numbers. 16/4=4 and 2652/4=663. The probability of drawing a queen then a king without replacement would be 4/663.
Answer:
Infinite number of solutions.
Step-by-step explanation:
We are given system of equations



Firs we find determinant of system of equations
Let a matrix A=
and B=![\left[\begin{array}{ccc}-1\\1\\-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C1%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)


Determinant of given system of equation is zero therefore, the general solution of system of equation is many solution or no solution.
We are finding rank of matrix
Apply
and 
:![\left[\begin{array}{ccc}-5\\1\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C1%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply
:![\left[\begin{array}{ccc}-5\\6\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-5\\6\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Apply
and 
:![\left[\begin{array}{ccc}-5\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-\frac{9}{2}\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B9%7D%7B2%7D%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Rank of matrix A and B are equal.Therefore, matrix A has infinite number of solutions.
Therefore, rank of matrix is equal to rank of B.
You can solve this by using "similar triangles".
In triangle ABC, we are looking for side AC which is x. Side AC is similar to side DF in triangle EDF.
You can solve for side x by picking two sides in triangle ABC and their corresponding sides in triangle EDF. This is what I mean:

Substitute for the values of AC, BC, DF and EF:


To solve for y, do the same thing. Pick two sides on triangle ABC and their corresponding sides in triangle DEF.

Substitute for the values and solve:


We have the value x to be 5.5 units and y to be 6 units.
Where's the picture???? I'm confusedd