Answer:
Explanation:
mass of refrigerator, m = 110 kg
coefficient of static friction, μs = 0.85
coefficient of kinetic friction, μk = 0.59
(a) the minimum force required to just start the motion in refrigerator
F = μs x mg
F = 0.85 x 110 x 9.8
F = 916.3 N
(b) The force required to move the refrigerator with constant speed
F' = μk x mg
F' = 0.59 x 110 x 9.8
F' = 636.02 N
(c) Let a be the acceleration.
Net force = Applied force - friction force
F net = 950 - 636.02
F net = 313.98 N
a = F net / mass
a = 313.98 / 110
a = 2.85 m/s²
Answer:
Stretch can be obtained using the Elastic potential energy formula.
The expression to find the stretch (x) is 
Explanation:
Given:
Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.
To find: Elongation in the spring (x).
We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).
The formula to find EPE is given as:

Rewriting the above expression in terms of 'x', we get:

Example:
If EPE = 100 J and spring constant, k = 2 N/m.
Elongation or stretch is given as:

Therefore, the stretch in the spring is 10 m.
So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.
The wavelength of the infrared radiation is λ =
×
m.
<h3>What is infrared radiation?</h3>
An infrared telescope is tuned to detect infrared radiation with a frequency of 9.45 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 9.45 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
λ=c/f
λ = 3×
/9.45×
λ = 3.174 ×
m
The term "infrared radiation" (IR) refers to a part of the electromagnetic radiation spectrum with wavelengths between about 700 nanometers (nm) and one millimeter (mm). Longer than visible light waves but shorter than radio waves are infrared waves.
Electromagnetic radiation with wavelengths longer than those of visible light is known as infrared, also known as infrared light. Since it is undetectable to the human eye, The typical range of wavelengths considered to be infrared (IR) is from about 1 millimeter to the nominal red edge of the visible spectrum, or about 700 nanometers.
To learn more about infrared radiation from the given link:
brainly.com/question/13163856
#SPJ4
The capacitance of a capacitor is the ratio of the stored charge to its potential difference, i.e.
C = Q/ΔV
C is the capacitance
Q is the stored charge
ΔV is the potential difference
Rearrange the equation:
ΔV = Q/C
We also know the capacitance of a parallel-plate capacitor is given by:
C = κε₀A/d
C is the capacitance
κ is the capacitor's dielectric constant
ε₀ is the electric constant
A is the area of the plates
d is the plate separation
If we substitute C:
ΔV = Qd/(κε₀A)
We assume the stored charge and the area of the plates don't change. Then if we double the plate spacing, i.e. we double the value of d, then the potential difference ΔV is also doubled.
It is 92.96 millions miles away
Hope that helped :)