1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
3 years ago
5

The foot of a ladder is 6m away from a wall. if the top of the ladder rest 8 feet up on the wall,how long is the ladder?

Physics
1 answer:
babunello [35]3 years ago
5 0

To solve this we can use Pythagorean's theorem for right triangles. The formula describes the longest side of a right triangle ( a triangle with a 90degree ). The side opposite to this angle equals the square root of the sum of the squares of the other two shorter sides. Given this equation, we have the length of the ladder as the longest side (hypotenuse) which is opposite the angle between the plane and the wall, given the height it makes with the wall 8 feet and distance of the other end of the ladder at 6m away we have below


Length of ladder = sqrt ((6 m)^2+(2.4384m)^2)

Note that 8 feet was converted to meter = 2.4384

Length of ladder is = sqrt (36 + 5.94579456) = 6.5 meters approximately

You might be interested in
Your car's 30.0 W headlight and 2.50 kW starter are ordinarily connected in parallel in a 12.0 V system. What power (in W) would
Tatiana [17]

Answer:

<h3>The power of headlight in series connection is 29.64 W</h3>

Explanation:

Given :

Power of headlight P_{1} = 30 W

Power of starter P_{2} = 2500 W

Voltage of headlight and starter V = 12 V

From equation of power,

 P = \frac{V^{2} }{R}

 R = \frac{V^{2} }{P}

For finding the resistance of headlight and starter,

⇒ For headlight,

 R_{1}  = \frac{144}{30} = 4.8 Ω

⇒ For starter,

R_{2} = \frac{144}{2500} = 0.057 Ω

Since equivalent resistance,

R_{eq} = R_{1} + R_{2} + ........

R_{eq} = 4.8 +0.057 = 4.857 Ω

So power in series is given by,

 P_{s } = \frac{V^{2} }{R_{eq} }  = \frac{144}{4.857}

 P_{s } = 29.64 W

8 0
3 years ago
Un tren emplea cierto tiempo en recorrer 240 km. Si la velocidad hubiera sido 20 km por hora mas que la que llevaba hubiera tard
podryga [215]

Answer:

A train takes some time to travel 240 km. If the speed had been 20 km per hour more than the one it was carrying, it would have taken 2 hours less to travel this distance. In what time did he cover the 240 km

Explanation:

Given that,

A train travelled a distance of 240km

Let the initial speed be

S_1 = x km/hr

Let assume the time spent on the first journey is

t_1 = a

Now if he increase the speed to

S_2 = (x + 20) km/hr

Then, he would have take 2hrs less time

Then, time t_2 = a - 2

The common data fore the two journey is the distance

Speed = distance / time

For the first stage

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x•a

x = 240 / a Equation 1

For stage two

d = S_2 × t_2

d = (x+20) × (a - 2)

240 = (x+20) × (a - 2). Equation 2

Substitute equation 1 into 2

240 = (240/a + 20) × (a -2)

240 = 240 - 480/a + 20a - 40

240 - 240 + 40 = - 480/a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Divided through by 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a(a+4) -6(a+4) = 0

(a-6)(a+4) = 0

(a-6) = 0 or (a+4) = 0

So, a = 6 or a = -4

The time cannot be negative, then, the time is a = 6hours

So, t_1 = a = 6hours,

So, the time used in the first journey is 6hours

So, in the second journey the time use is 2hours less than the first journey

Then, t_2 = 6 - 2 = 4 hours

t_1 = 6 hours

t_2 = 4 hours

Spanish

Un tren recorrió una distancia de 240 km.

Deje que la velocidad inicial sea

S_1 = x km / h

Supongamos que el tiempo dedicado al primer viaje es

t_1 = a

Ahora si aumenta la velocidad a

S_2 = (x + 20) km / h

Entonces, habría tomado 2 horas menos de tiempo

Entonces, el tiempo t_2 = a - 2

Los datos comunes para los dos viajes son la distancia.

Velocidad = distancia / tiempo

Para la primera etapa

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x • a

x = 240 / a Ecuación 1

Para la etapa dos

d = S_2 × t_2

d = (x + 20) × (a - 2)

240 = (x + 20) × (a - 2). Ecuación 2

Sustituye la ecuación 1 en 2

240 = (240 / a + 20) × (a -2)

240 = 240 - 480 / a + 20a - 40

240 - 240 + 40 = - 480 / a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Dividido entre 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a (a + 4) -6 (a + 4) = 0

(a-6) (a + 4) = 0

(a-6) = 0 o (a + 4) = 0

Entonces, a = 6 o a = -4

El tiempo no puede ser negativo, entonces, el tiempo es a = 6 horas

Entonces, t_1 = a = 6 horas,

Entonces, el tiempo utilizado en el primer viaje es de 6 horas

Entonces, en el segundo viaje, el uso del tiempo es 2 horas menos que el primer viaje

Entonces, t_2 = 6 - 2 = 4 horas

t_1 = 6 horas

t_2 = 4 horas

5 0
3 years ago
Samples of different materials, A and B, have the same mass, but the sample
Effectus [21]

Answer:

B. The particles that make up material B have more mass than the

particles that make up material A.

Explanation:

3 0
3 years ago
Explain, step by step, how to calculate the amount of current (I) that will go through the resistor in this circuit
anygoal [31]

Answer:

0.03 A

Explanation:

From the question given above, the following data were obtained:

Voltage (V) = 12 V

Resistor (R) = 470 Ω

Current (I) =?

From ohm's law, the voltage, current and resistor are related by the following formula:

Voltage = current × resistor

V = IR

With the above formula, we can obtain the current in the circuit as follow:

Voltage (V) = 12 V

Resistor (R) = 470 Ω

Current (I) =?

V = IR

12 = I × 470

Divide both side by 470

I = 12 / 470

I = 0.03 A

Thus, the current in the circuit is 0.03 A

3 0
2 years ago
Read 2 more answers
A 535 kg roller coaster car began at rest at the top of a 93.0 m hill. Now it is at the top of the first loop-de-loop.
iVinArrow [24]
Using g = 9.8 m/s2, the statement that best describes the roller coaster car when it is at the top of the loop-de-loop is that The car has both potential and kinetic energy, and it is moving at 24.6 m/s. The correct answer is <span>B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.</span>
4 0
2 years ago
Read 2 more answers
Other questions:
  • Vector A, with magnitude 28.0 units, points in the positive y-direction. Vector A + B has a magnitude of 19.0 units and points i
    9·1 answer
  • A rock, which weighs 1400 n in air, has an apparent weight of 900 n when submerged in fresh water (998 kg/m3). the volume of the
    14·1 answer
  • What is the power when a crane lifts a piece of pipe from the ground to a certain height, doing 15000 J of work in 25s?
    13·1 answer
  • A proton is released from rest in a uniform electric field. After the proton has traveled a distance of 10.0 cm, its speed is 1.
    13·1 answer
  • The pitch of the sound produced by a metal wire fixed between two points depends on A) how fast the wire vibrates. B) what type
    13·1 answer
  • a person Travels along a straight road for half the distance with velocity V1 and the remaining half the distance with velocity
    7·1 answer
  • Cuantos CM son:<br><br>8 newtons
    7·1 answer
  • How do objects at rest and in motion respond in the presence of an external, unbalanced force?
    13·1 answer
  • What average energy of particles does temperature measures?​
    15·1 answer
  • what kinds of investigations might have led to our current understanding of matter and energy? why is it important for scientist
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!