1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veseljchak [2.6K]
2 years ago
12

The phrase change in which a substance changes from a gas directly to a solid is

Physics
1 answer:
mr_godi [17]2 years ago
6 0
Answer is Deposition…
You might be interested in
A measure of how far an object has moved from a starting point
Anvisha [2.4K]
Volume??? velocity??????
5 0
4 years ago
The distance between two successive peaks on adjacent waves is its
yKpoI14uk [10]

Answer:

Wavelength

Explanation:

Wavelength is the distance between two corresponding consecutive phases of a waveform. It is usually represented by λ in the mathematical expressions.

A continuous propagating wave repeats its wavelength over the distance.

A wave has crest and trough with respect to time and space.

Wave is defined as a disturbance of any parameter repeated in a cyclic manner over the given time.

3 0
3 years ago
The wheel having a mass of 100 kg and a radius of gyration about the z axis of kz=300mm, rests on the smooth horizontal plane.a.
pickupchik [31]

Answer:

a) 20 rad/s

b) 6 m/s

Explanation:

b) Force acting on the wheel is 200 N

mass of the wheel is 100 kg

From Newton's second law of motion, F = m × a

Where F is the net force acting on the body

m is mass of the body

a is the acceleration of the body

By substituting the values we get, a = 2 m/s²

As acceleration is constant, we can use the below formula for calculating the final velocity of the object

v = u + a × t

Where v is the final velocity

u is the initial velocity

a is the acceleration

t is the time taken

u = 0 (∵ it starts from rest)

By substituting the values we get

v = 0 + 2 × 3 = 6 m/s

∴ Speed of center of mass after 3 seconds = 6 m/s

a) As the wheel rotates about z-axis, radius of gyration will be the radius of wheel

∴ Radius of the wheel = 300 mm

Torque acting on the wheel about axis of rotation = 300 mm × 200 N =

60 N·m

Torque = (Moment of inertia) × (angular acceleration)

Assuming that the mass of spokes of the wheel to be negligible,

Moment of inertia of the wheel about axis of rotation = 100 × 300² × 10^{-6} = 9 kg·m²

Then,

60 = 9 × (angular acceleration)

∴ angular acceleration ≈ 6·67 rad/s²

As angular acceleration of the wheel is constant, we can use the below formula for calculation of final angular speed

w_{f} = w_{i} + α × t

Where

w_{f} is the final angular velocity

w_{i} is the initial angular velocity

α is the angular acceleration

t is the time taken

w_{i} is 0 (∵ initially it starts from rest)

By substituting the values we get

w_{f} = 6·67 × 3 = 20 rad/s

∴ Angular velocity of the wheel after three seconds = 20 rad/s

3 0
3 years ago
In a two-slit experiment using coherent light, the distance between the slits and the screen is 1.10 m, and the distance between
Paul [167]

Answer:

D) 763 nm

Explanation:

Calculation for the wavelength of light

Using this formula

Wavelength of light=Delta Y*Distance / Length

Where,

Delta Y represent the 2nd order bright fringe

Length represent the distance between both the slits and the screen

Distance represent the Distance between the slits

Let note that cm to m = (4.2) x 10^-2 and mm to m= ( 0.0400x 10^-3)

Now Let plug in the formula

Wavelength of light=[(4.2 x 10^-2m)(0.0400 x 10^-3m) / 2(1.1m)]*10^-7 meters

Wavelength of light=[(0.042m) (0.0004m)/2.2m]*10^-7 meters

Wavelength of light =(0.0000168m/2.2m)*10^-7 meters

Wavelength of light =7.63 *10^-7 meters

Wavelength of light =763 nm

Therefore the Wavelength of light will be 763 nm

3 0
3 years ago
An 89 kg man drops from rest on a diving board −3.1 m above the surface of the water and comes to rest 0.5 s after reaching the
OLga [1]

To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

m= 89 kg\\x = 3.1 m\\t = 0.5s\\a = g = 9.8m/s^2

Through the aforementioned formula we will have to

v_f^2-v_i^2 = 2ax

The particulate part of the rest, so the final speed would be

v_f^2 = 2gx

v_f=\sqrt{2(9.8)(3.1)}

v_f = 7.79m/s

Now from Newton's second law we know that

F = ma

Here,

m = mass

a = acceleration, which can also be written as a function of velocity and time, then

F = m\frac{dv}{dt}

Replacing we have that,

F = (89)\frac{7.79}{0.5}

F = 1386.62N

Therefore the force that the water exert on the man is 1386.62

3 0
4 years ago
Other questions:
  • If you want to know your speed going from point A to point B, what
    9·1 answer
  • Who speaks the line "Lord, what fools these mortals be"?
    8·1 answer
  • The volume control on a surround-sound amplifier is adjusted so the sound intensity level at the listening position increases fr
    5·1 answer
  • Find the equivalent resistance of this parallel circuit with two strands.
    11·1 answer
  • What is the final velocity of an object that is dropped if it falls a distance of 100 m?
    6·1 answer
  • Which is not a step of the scientific method?
    6·1 answer
  • What is the function of a resistor in a circuit? How does it affect the amount of charge that flows? How does it affect the rate
    13·1 answer
  • What is the answer to the question ?
    11·1 answer
  • WHY IS NO ONE HELPING I'M BOUTTA GET REPORTED FR!!!!!!!!!!!!!!
    15·1 answer
  • In which scenario is work being done on an object?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!