Part A
Everything looks good but line 4. You need to put all of the "2h" in parenthesis so the teacher will know you are squaring all of 2h. As you have it right now, you are saying "only square the h, not the 2". Be careful as silly mistakes like this will often cost you points.
============================================================
Part B
It looks like you have the right answer. Though you'll need to use parenthesis to ensure that all of "75t/(2pi)" is under the cube root. I'm assuming you made a typo or forgot to put the parenthesis.
dh/dt = (25)/(2pi*h^2)
2pi*h^2*dh = 25*dt
int[ 2pi*h^2*dh ] = int[ 25*dt ] ... applying integral to both sides
(2/3)pi*h^3 = 25t + C
2pi*h^3 = 3(25t + C)
h^3 = (3(25t + C))/(2pi)
h^3 = (75t + 3C)/(2pi)
h^3 = (75t + C)/(2pi)
h = [ (75t + C)/(2pi) ]^(1/3)
Plug in the initial conditions. If the volume is V = 0 then the height is h = 0 at time t = 0
0 = [ (75(0) + C)/(2pi) ]^(1/3)
0 = [ (0 + C)/(2pi) ]^(1/3)
0 = [ (C)/(2pi) ]^(1/3)
0^3 = (C)/(2pi)
0 = C/(2pi)
C/(2pi) = 0
C = 0*2pi
C = 0
Therefore the h(t) function is...
h(t) = [ (75t + C)/(2pi) ]^(1/3)
h(t) = [ (75t + 0)/(2pi) ]^(1/3)
h(t) = [ (75t)/(2pi) ]^(1/3)
Answer:
h(t) = [ (75t)/(2pi) ]^(1/3)
============================================================
Part C
Your answer is correct.
Below is an alternative way to find the same answer
--------------------------------------
Plug in the given height; solve for t
h(t) = [ (75t)/(2pi) ]^(1/3)
8 = [ (75t)/(2pi) ]^(1/3)
8^3 = (75t)/(2pi)
512 = (75t)/(2pi)
(75t)/(2pi) = 512
75t = 512*2pi
75t = 1024pi
t = 1024pi/75
At this time value, the height of the water is 8 feet
Set up the radius r(t) function
r = 2*h
r = 2*h(t)
r = 2*[ (75t)/(2pi) ]^(1/3) .... using the answer from part B
Differentiate that r(t) function with respect to t
r = 2*[ (75t)/(2pi) ]^(1/3)
dr/dt = 2*(1/3)*[ (75t)/(2pi) ]^(1/3-1)*d/dt[(75t)/(2pi)]
dr/dt = (2/3)*[ (75t)/(2pi) ]^(-2/3)*(75/(2pi))
dr/dt = (2/3)*(75/(2pi))*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
Plug in t = 1024pi/75 found earlier above
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75(1024pi/75))/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (1024pi)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*(1/64)
dr/dt = 25/(64pi)
getting the same answer as before
----------------------------
Thinking back as I finish up, your method is definitely shorter and more efficient. So I prefer your method, which is effectively this:
r = 2h, dr/dh = 2
dh/dt = (25)/(2pi*h^2) ... from part A
dr/dt = dr/dh*dh/dt ... chain rule
dr/dt = 2*((25)/(2pi*h^2))
dr/dt = ((25)/(pi*h^2))
dr/dt = ((25)/(pi*8^2)) ... plugging in h = 8
dr/dt = (25)/(64pi)
which is what you stated in your screenshot (though I added on the line dr/dt = dr/dh*dh/dt to show the chain rule in action)
Answers: 0.286
Explanation:
Let E → major in Engineering
Let S → Play club sports
P (E) = 28% = 0.28
P (S) = 18% = 0.18
P (E ∩ S ) = 8% = 0.08
Probability of student plays club sports given majoring in engineering,
P ( S | E ) = P (E ∩ S ) ÷ P (E) = 0.08 ÷ 0.28 = 0.286
Answer:

Step-by-step explanation:
Hope this helped!
Answer:
all work is shown and pictured
To find the equation of the line, we need to figure out the slope and y-intercept.
To find the y-intercept, look at the number where the line intersects the y-axis. The number is 5. The equation so far is y = ?x + 5.
We still didn't figure out the slope yet. To figure out the slope, pick two points. Use the rise over run method. It is in the image below. The line is going up to the left, so the slope will be negative. Now we know the slope is -1/3. The equation now that we figured out the slope is y = -1/3x + 5.
I hope this helps you! Let me know if I got something wrong.