Answer:
Most metals are in the liquid state at room temperature.<u>False</u><u>.</u>
Explanation:
it needs excess heat except mercury and lithium.
Answer:
B. Dust storm
Explanation:
A meteorologist would predict dust storm most likely. Before dust storm the air condition and air pressure reduces in the particular area which indicate towards a dust storm. As pressure of a region reduces the air of the neighboring area try to maintain that pressure and rush towards low pressure area and causes dust storm.
A few different ways to do this:
Way #1:
The current in the series loop is (12 V) / (total resistance) .
(Turns out to be 2 Amperes, but the question isn't asking for that.)
In a series loop, the current is the same at every point, so it's
the same current through each resistor.
The power dissipated by a resistor is (current)² · (resistance),
and the current is the same everywhere in the circuit, so the
smallest resistance will dissipate the least power. That's R1 .
And by the way, it's not "drawing" the most power. It's dissipating it.
Way #2:
Another expression for the power dissipated by a resistance is
(voltage across the resistance)² / (resistance) .
In a series loop, the voltage across each resistor is
[ (individual resistance) / (total resistance ] x battery voltage.
So the power dissipated by each resistor is
(individual resistance)² x [(battery voltage) / (total resistance)²]
This expression is smallest for the smallest individual resistance.
(The other two quantities are the same for each individual resistor.)
So again, the least power is dissipated by the smallest individual resistance.
That's R1 .
Way #3: (Einstein's way)
If we sat back and relaxed for a minute, stared at the ceiling, let our minds
wander, puffed gently on our pipe, and just daydreamed about this question
for a minute or two, we might have easily guessed at the answer.
===> When you wire up a battery and a light bulb in series, the part
that dissipates power, and gets so hot that it radiates heat and light, is
the light bulb (some resistance), not the wire (very small resistance).
This is EXACTLY the same scenario as the skydiver jumping
out of the airplane, except the whole thing is turned on its side.
==> The skydiver leaves the airplane.
The force of gravity on him (his weight) makes him accelerate down.
But the air resists his downward motion.
The faster he falls, the more UPWARD force the air exerts on him.
The more upward force the air exerts, the less he accelerates down.
When his falling speed is great enough, he stops accelerating, and
falls with a constant speed. He calls that speed his 'terminal velocity'.
==> The submarine turns on its engines, at maximum power.
The force of the engines makes the sub accelerate forward.
But the water resists its forward motion.
The faster it moves, the more BACKWARD force the water exerts on it.
The more backward force the water exerts, the less it accelerates forward.
When the forward speed is great enough, it stops accelerating, and moves
with a constant speed. I don't know if they use the same term in submarines,
but you might say that speed is the 'terminal velocity' in water.