Answer: 1,224 km/h
Explanation:
To do this, we pick the first unit and convert
Picking m first and converting to km:
Since we're converting from a non-prefix to a prefix, we divide the value by the prefix were taking it to. In this case, kilo = 10³ which means we're going to divide our value by 1000 to convert it from m to km
340 m/s ÷ 1000 = 0.34 km/s
Now, let's convert our seconds to hour:
We'll need to calculate how many hours is equivalent to one second first;
1 hr = 60×60 seconds
X hr = 1 second
*Cross multiply*
1 × 1 = X × 60 × 60
1 = 3,600 X
X = 1 / 3,600
X = 2.778×10⁻⁴ hour
So, in the place of "1 Second", we're going to be inserting 2.778×10⁻⁴ hour instead
0.34 km / s = 0.34 km / 2.778×10⁻⁴ hour
(0.34 / 2.778×10⁻⁴) km/hour
1,224 km/h.
340 m/s = 1,224 km/h
The magnitude of charge on a proton and electron is the same, 1.602 x 10-19 C. Protons are +, and electrons -.
Answer:
Signal detection theory
Explanation:
Signal detection theory states that stimulus ca be detected according to its intensity and a person's psychological and/or physical state. This means that we can notice things according to how strong they are but also, a person's characteristics like experience and physiological state like fatigue can affect the ability to detect them.
Because of this, the answer is that according to signal detection theory, the ability to detect a stimulus depends not only on the intensity of the stimulus but also on other variables such as the level of noise in the system and your expectations.
The statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.
<h3>What is mass-energy equivalence?</h3>
The expression mass-energy equivalence refers to the proportion of matter that can be converted into energy in the universe.
This mass-energy equivalence is an outcome of process of converting mass into energy.
In conclusion, the statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.
Learn more about mass-energy equivalence here:
brainly.com/question/3171044
#SPJ1
Answer:
For the first situation, we first need to find the mass of the second train car.
In order to do that, we apply the conservation of the amount of movement:

and we have as a result:
m2 = 289.6875
For the second situation, also we will apply the conservation of the amount of movement:

and we have as a result:
V = 2.64 (it is moving to the right)