Answer:
3 moles
Explanation:
So, approximately 3 moles of NaNO3 can be obtained, by reacting 253 grams of Na2CrO4. Also, the number of moles is a dimensionless quantity.
Answer:
- The name for the potassium oxide's structure is ionic.
Properties:
- High melting point.
- Soluble in water.
Explanation:
- The ionic structure it is formed by a cation (atom with positive charge) and an anion (atom with negative charge). In this case, potassium is the cation and the oxigen is the anion.
- Since potassium oxide is an ionic compound, it has a high melting point, because of the strong bonds. Also, it is soluble in polar solvents, like water, because its ions generate polarity in the molecule.
The half-life of carbon-14 is about 5730 years
Decomposition is a chemical reaction that breaks the reactant into two or more products. Moles of nitrogen gas
in the cylinder is 1.63 moles.
<h3>What is the ideal gas equation?</h3>
The ideal gas equation states the relation of the hypothetical ideal gas according to the pressure, volume, temperature and moles of the gas. It is given by,

Where,
Pressure (P) = 2000 kPa
Volume (V) = 2L
Temperature (T) = 295 K
Gas constant (R)= 0.08206
Substituting values in the equation:

Therefore, 1.63 moles are produced.
Learn more about ideal gas equation here:
brainly.com/question/26720901
Answer: sodium amide undergoes an acid -base reaction
Explanation:
sodium amide is a ionic compound and basically exists as sodium cation and amide anion. Amide anion is highly basic in nature and hence as soon as there is amide anion generated in the solution , Due to its very pronounced acidity it very quickly abstracts the slightly acidic proton available on methanol.
This leads to formation of ammonia and sodium methoxide.
Hence sodium amide reacts with methanol and abstracts its only acidic proton and form ammonia and sodium Methoxide.
Hence the 3rd statement is a corrects statement.
So we cannot use methanol for sodium amide because sodium amide itself would react with methanol and the inherent molecular natur of sodium amide would then change.
The 1st and 2nd statements both are incorrect because both the compounds methanol as well as sodium amide have dipole moments and hence are polar molecules.
The 4th statement is also incorrect as both the molecules have dipole moment and hence there would be ion-dipole forces operating between them.
The following reaction occurs:
NaNH₂+CH₃OH→NH₃+CH₃ONa