Answer:
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s
Explanation:
You can predict the order of orbital energies by constructing a diagram as shown below.
Follow the arrows to get the orbitals in order of increasing energy.
The order is
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s
<span>2.10 grams.
The balanced equation for the reaction is
CO + 2H2 ==> CH3OH
The key thing to take from this equation is that it takes 2 hydrogen molecules per carbon monoxide molecule for this reaction. And since we've been given an equal number of molecules for each reactant, the limiting reactant will be hydrogen.
We can effectively claim that we have 5.86/2 = 2.93 l of hydrogen and an excess of CO to consume all of the hydrogen. So the number of moles of hydrogen gas we have is:
2.93 l / 22.4 l/mol = 0.130803571 mol
And since it takes 2 moles of hydrogen gas to make 1 mole of methanol, divide by 2, getting.
0.130803571 mol / 2 = 0.065401786 mol
Now we just need to multiply the number of moles of methanol by its molar mass. First lookup the atomic weights involved.
Atomic weight carbon = 12.0107 g/mol
Atomic weight hydrogen = 1.00794 g/mol
Atomic weight oxygen = 15.999 g/mol
Molar mass CH3OH = 12.0107 + 4 * 1.00794 + 15.999 = 32.04146 g/mol
So the mass produced is
32.04146 g/mol * 0.065401786 mol = 2.095568701 g
And of course, properly round the answer to 3 significant digits, giving 2.10 grams.</span>
4.7 is the answer!
Mark me brainiest
They loose a valence electron
Answer: The coefficient we should change first is for
.
Explanation:
The given reaction equation is as follows.

Here, number of atoms present on reactant side are as follows.
- Al = 1
- Ni = 1
= 2
Number of atoms present on the product side are as follows.
- Al = 1
- Ni = 1
= 3
To balance this equation, multiply Al by 2 and
by 3 on reactant side. Also, multiply
by 2 and Ni by 3 on the product side.
Hence, the equation can be rewritten as follows.

Now, number of atoms present on reactant side are as follows.
- Al = 2
- Ni = 3
= 6
Number of atoms present on product side are as follows.
- Al = 2
- Ni = 3
= 6
Since, the atoms on both reactant and product side are same. Hence, it is now a balanced chemical equation.
Thus, we can conclude that the coefficient we should change first is for
.