Answer:
209.98 g of NaOH
Explanation:
We are given;
- Volume of HCl as 3 L
- Molarity of HCl as 1.75 M
We are required to calculate the mass of NaOH required to completely neutralize the acid given.
First, we write a balanced equation for the reaction between NaOH and HCl
That is;
NaOH + HCl → NaCl + H₂O
Second, we determine the number of moles of HCl
Number of moles = Molarity × Volume
= 1.75 M × 3 L
= 5.25 moles
Third, we use the mole ratio to determine the moles of NaOH
From the reaction,
1 mole of NaOH reacts with 1 mole of HCl
Therefore;
Moles of NaOH = Moles of HCl
= 5.25 moles
Fourth, we determine the mass of NaOH
Molar mass of NaOH = 39.997 g/mol
Mass of NaOH = 5.25 moles × 39.997 g/mol
= 209.98 g
Thus, 209.98 g of NaOH will completely neutralize 3L of 1.74 M HCl
Answer:
Copper is typically a solid and has a coppery, bronzy color. It is a metal and has a relatively high melting point. It has a strong luster and can conduct electricity.
Transition metals are from group 3 to group 12.
Answer:
The rusting of iron is spontaneous at low temperatures.
Explanation:
The given chemical reaction is:
4Fe(s) + 3O2(g) ----> 2Fe2O3(s) [rust]
The rusting of iron is a chemical reaction in which iron reacts with oxygen in presence of moisture and forms iron oxide.
This reaction takes place in a faster rate when there is low temperatures in the atmosphere.
When temperature is low, the moisture in the atmosphere is more and hence, rate of rusting is more.