Answer:
<em>When molecular hydrogen (H2) and oxygen (O2) are combined and allowed to react together, energy is released and the molecules of hydrogen and oxygen can combine to form either water or hydrogen peroxide.</em>
Answer : 51.8 g of nitrogen are needed to produce 100 grams of ammonia gas.
Solution : Given,
Mass of
= 100 g
Molar mass of
= 27 g/mole
Molar mass of
= 28 g/mole
First we have to calculate moles of
.

The given balanced chemical reaction is,

From the given reaction, we conclude that
2 moles of
produced from 1 mole of 
3.7 moles of
produced from
of 
Now we have to calculate the mass of
.
Mass of
= Moles of
× Molar mass of 
Mass of
= 1.85 mole × 28 g/mole = 51.8 g
Therefore, 51.8 g of nitrogen are needed to produce 100 grams of ammonia gas.
Answer:
The answer to your question is: 6.8 g of water
Explanation:
Data
2.6 moles of HCl
1.4 moles of Ca(OH)2
2HCl + Ca(OH)2 → 2H2O + CaCl2
MW 2(36.5) 74 36 g 111 g
73g
1 mol of HCl ---------------- 36.5 g
2.6 mol -------------- x
x = (2.6 x 36.5) / 1 = 94.9 g
1 mol of Ca(OH)2 -------------- 74 g
1.4 mol --------------- x
x = (1.4 x 74) / 1 = 103.6 g
Grams of water
73 g of HCl ------------------ 36g of H2O
94.9 g ------------------- x
x = (94.9 x 36) / 73 = 46.8 g of water
Answer:
If one of the reactants is a solid, only the particles at the surface can partake in the reaction. Breaking the reactant into smaller pieces increases the surface and more particles are exposed to the reaction mixture. This results in an increased frequency of collisions and therefore a faster rate of reaction
Answer:
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.
A series of six elements called the metalloids separate the metals from the nonmetals in the periodic table. The metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. These elements look metallic; however, they do not conduct electricity as well as metals so they are semiconductors. They are semiconductors because their electrons are more tightly bound to their nuclei than are those of metallic conductors. Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form monatomic anions. This intermediate behavior is in part due to their intermediate electronegativity values. In this section, we will briefly discuss the chemical behavior of metalloids and deal with two of these elements—boron and silicon—in more detail.
Explanation:
i hope this helps you :)