- From the general law of gases: PV = nRT,
where P is the pressure (atm),
V is the volume (L),
n is the number of moles,
R is the general gas constant (8.314 L.atm/mol.K),
T is the temperature in Kelvin
- at constant volume of the gas: P1T2 = P2T1
P1 = 3.20 atm, T1 = 300 K, T2 = 290 K, P2 = ??
(3.20 atm)(290 K) = P2(300 K)
P2 = (3.20 atm)(290 K)/ (300 K) = 3.093 atm
1 mole consist of 6.022 ×10 ²³
Therefore in NaOH = 6.022 ×10 ²³ moles of NaOH
To solve this question, we first need to know the mass of one mole of mercury. This can be done by checking the periodic table.
From the periodic table, we can see that:
molar mass of mercury = 200.59 grams/mole.
From the measurements, the chemist found that the participated amount of mercury is 0.02 moles.
We can simply determine the mass of 0.02 moles by doing cross multiplication as follows:
mass of 0.02 moles = (0.02 x 200.59) / 1 = 4.0118 grams
Rounding the answer to 2 significant digits, we get:
mass of 0.02 moles = 4.01 grams