Answer:
1. hydrogen - H
2. helium - He
3. sodium - Na
4. magnesium - Mg
5. potassium - K
Explanation:
Hydrogen is the element of group 1 and first period. The atomic number of hydrogen is 1 and the symbol of the element is H.
The electronic configuration of the element hydrogen is:-

Helium is the element of group 18 and first period. The atomic number of helium is 2 and the symbol of the element is He.
The electronic configuration of the element helium is:-

Sodium is the element of group 1 and third period. The atomic number of sodium is 11 and the symbol of the element is Na.
The electronic configuration of the element sodium is:-

Magnesium is the element of group 2 and third period. The atomic number of magnesium is 12 and the symbol of the element is Mg.
The electronic configuration of the element magnesium is:-

Potassium is the element of group 1 and forth period. The atomic number of potassium is 19 and the symbol of the element is K.
The electronic configuration of the element potassium is:-

Answer:
C. 
Explanation:
Hello there!
In this case, according to the given chemical reaction, it turns out possible to realize there is one sulfur atom on each side of the chemical equation but two hydrogen atoms on the left and one on the right, which means the latter must be balanced in agreement to the law of conservation of mass.
In such a way, by setting a 2 on H⁺, the reaction will be balanced:

Now, we count the transfer electrons for sulfur from -2 to 0 as 2e⁻ on the right, which will match with the option C.

Regards!