Answer:
see explaination
Explanation:
#include<stdio.h>
/* Your solution goes here */
//Impllementation of SwapArrayEnds method
void SwapArrayEnds(int sortArray[],int SORT_ARR_SIZE){
//Declare tempVariable as integer type
int tempVariable;
if(SORT_ARR_SIZE > 1){
tempVariable = sortArray[0];
sortArray[0] = sortArray[SORT_ARR_SIZE-1];
sortArray[SORT_ARR_SIZE-1] = tempVariable;
}
}
int main(void) {
const int SORT_ARR_SIZE = 4;
int sortArray[SORT_ARR_SIZE];
int i = 0;
sortArray[0] = 10;
sortArray[1] = 20;
sortArray[2] = 30;
sortArray[3] = 40;
SwapArrayEnds(sortArray, SORT_ARR_SIZE);
for (i = 0; i < SORT_ARR_SIZE; ++i) {
printf("%d ", sortArray[i]);
}
printf("\n");
return 0;
}
Please go to attachment for the program screenshot and output
Answer:
Here’s one!
Given [math]R[/math], the radius of the circle.
Let [math]N,D\leftarrow 0[/math]
Repeat until [math]D[/math] is large enough (about 1,000,000)
[math]x,y\leftarrow U[0,1][/math]
If [math]x^2 + y^2\le 1[/math] then [math]N\leftarrow N+1[/math]
[math]D\leftarrow D+1[/math]
[math]P\leftarrow\frac{8NR}{D}[/math]
Return [math]P[/math]
[math]U[0,1][/math] is a uniform random number in the range [math][0,1][/math].
Explanation:
Let me re-write the proposition:
p↔q⊕(¬p↔¬r)∧¬q.
Generally, the number of rows in a truth table depends on the number of Variables. Here we have 3 Variables: p,q and r. Each of them can have either the value of 1 or 0, which gives us 2*2*2 possibilities, or 2³, that is 8 possibilities and 8 rows:
p=0, q=0, r=0
p=0, q=0, r=1
p=0, q=1, r=0
p=0, q=1, r=1
p=1, q=0, r=0
p=1, q=0, r=1
p=1, q=1, r=0
p=1, q=1, r=1
The application program that saves data automatically as it is entered is the MS Access.