Answer: All living things are comprised of cells are in the case of unicellular organisms a cell. And what determines if something is living is whether are not it can reproduce without the assistance of a host organism. Some organelles all cells contain whether prokaryotic are eukaryotic are cell membranes Genetic material (DNA and forms of RNA) a cytoplasm and ribosomes. Obviously there are many more organelles but these are some shared by all cells whether prokaryotic, eukaryotic or plant a type of eukaryote.
Answer:
The correct answer is explained below:
Explanation:
- According to the question, heterozygous tall, heterozygous axillary plant has the following genotype, TtAa.
- It produces the following gametes: TA, Ta, tA, ta.
- The heterozygous tall, terminal plant has the following genotype: Ttaa
- It produces the following gametes: Ta, ta.
- Crossing them,
TA Ta tA ta
Ta TTAa TTaa TtAa Ttaa
(Tall, Axillary) (Tall, Terminal) (Tall, Axillary) (Tall, Terminal)
ta TtAa Ttaa ttAa ttaa
(Tall, Axillary) (Tall, Terminal) (Short, Axillary) (Short, Terminal)
- The genotypes of the offspring obtained are: TTAa, TTaa, TtAa, Ttaa, ttAa and ttaa respectively.
- The phenotypes obtained are:
- Tall, Axillary = 3.
- Tall, Terminal = 3.
- Short, Axillary = 1.
- Short, Terminal = 1.
Answer:
D. All of the above
Explanation:
In Human anatomy, cardiac cycle can be defined as a complete heartbeat of the human heart which comprises of sequential alternating contraction and relaxation of the atria and ventricles, therefore causing blood to flow unidirectionally (one direction) throughout the human body.
Generally, the cardiac cycle occurs in two (2) stages;
1. Diastole : in this stage, the ventricles is relaxed and would be filled with blood.
2. Systole: at this stage, the muscles contracts and thus, allow blood to be pushed through the atria.
Cardiac output can be defined as the volume of blood that is being pumped by the mammalian heart through the left and right ventricle per unit time (minute).
The following conducting systems of the heart cause the ventricles to contract;
I. Atrioventricular (AV) node: it's a component of the electrical conduction system of the mammalian heart located in the Koch triangle which connect the ventricles and atria electrically.
II. Atrioventricular (AV) bundle: it's a specialized tissue that transmits electrical impulse from the atrioventricular (AV) node to the Purkinje fibres of the ventricles.
III. Purkinje fibers: it's a network of specialized cells that comprises of glycogen and they transmit cardiac action potentials in a rapid manner from the atrioventricular (AV) bundle to the myocardium of the ventricles.
Furthermore, the right atrioventricular valve (AV) also referred to as the tricuspid valve is located on the right dorsal side of the human heart. The right atrioventricular valve (AV) comprises of three (3) leaflets (flaps) which opens and closes in order to allow for the flow of blood from the right atrium of the human heart to the right ventricle. Also, the right atrioventricular valve is saddled with the responsibility of preventing blood from flowing backward in the mammalian heart.